SUMMARY The Ecuadorian forearc is a complex region of accreted terranes with a history of large megathrust earthquakes. Most recently, a Mw 7.8 megathrust earthquake ruptured the plate boundary offshore of Pedernales, Ecuador on 16 April 2016. Following this event, an international collaboration arranged by the Instituto Geofisico at the Escuela Politécnica Nacional mobilized a rapid deployment of 65 seismic instruments along the Ecuadorian forearc. We combine this new seismic data set with 14 permanent stations from the Ecuadorian national network to better understand how variations in crustal structure relate to regional seismic hazards along the margin. Here, we present receiver function adaptive common conversion point stacks and a shear velocity model derived from the joint inversion of receiver functions and surface wave dispersion data obtained through ambient noise cross-correlations for the upper 50 km of the forearc. Beneath the forearc crust, we observe an eastward dipping slow velocity anomaly we interpret as subducting oceanic crust, which shallows near the projected centre of the subducting Carnegie Ridge. We also observe a strong shallow positive conversion in the Ecuadorian forearc near the Borbon Basin indicating a major discontinuity at a depth of ∼7 km. This conversion is not ubiquitous and may be the top of the accreted terranes. We also observe significant north–south changes in shear wave velocity. The velocity changes indicate variations in the accreted terranes and may indicate an increased amount of hydration beneath the Manabí Basin. This change in structure also correlates geographically with the southern rupture limit of multiple high magnitude megathrust earthquakes. The earthquake record along the Ecuadorian trench shows that no event with a Mw >7.4 has ruptured south of ∼0.5°S in southern Ecuador or northern Peru. Our observations, along with previous studies, suggest that variations in the forearc crustal structure and subducting oceanic crust may influance the occurrence and spatial distribution of high magnitude seismicity in the region.
more »
« less
Upper-plate structure in Ecuador coincident with the subduction of the Carnegie Ridge and the southern extent of large mega-thrust earthquakes
SUMMARY The Ecuadorian convergent margin has experienced many large mega-thrust earthquakes in the past century, beginning with a 1906 event that propagated along as much as 500 km of the plate interface. Many subsections of the 1906 rupture area have subsequently produced Mw ≥ 7.7 events, culminating in the 16 April 2016, Mw 7.8 Pedernales earthquake. Interestingly, no large historic events Mw ≥ 7.7 appear to have propagated southward of ∼1°S, which coincides with the subduction of the Carnegie Ridge. We combine data from temporary seismic stations deployed following the Pedernales earthquake with data recorded by the permanent stations of the Ecuadorian national seismic network to discern the velocity structure of the Ecuadorian forearc and Cordillera using ambient noise tomography. Ambient noise tomography extracts Vsv information from the ambient noise wavefield and provides detailed constraints on velocity structures in the crust and upper mantle. In the upper 10 km of the Ecuadorian forearc, we see evidence of the deepest portions of the sedimentary basins in the region, the Progreso and Manabí basins. At depths below 30 km, we observe a sharp delineation between accreted fast forearc terranes and the thick crust of the Ecuadorian Andes. At depths ∼20 km, we see a strong fast velocity anomaly that coincides with the subducting Carnegie Ridge as well as the southern boundary of large mega-thrust earthquakes. Our observations raise the possibility that upper-plate structure, in addition to the subducting Carnegie Ridge, plays a role in the large event segmentation seen along the Ecuadorian margin.
more »
« less
- PAR ID:
- 10184035
- Date Published:
- Journal Name:
- Geophysical Journal International
- Volume:
- 220
- Issue:
- 3
- ISSN:
- 0956-540X
- Page Range / eLocation ID:
- 1965 to 1977
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY The Ecuadorian Andes are a complex region characterized by accreted oceanic terranes driven by the ongoing subduction of the oceanic Nazca plate beneath South America. Present-day tectonics in Ecuador are linked to the downgoing plate geometry featuring the subduction of the aseismic, oceanic Carnegie Ridge, which is currently entering the trench. Using seismic tomography, we jointly invert arrival times of P and S waves from local and teleseismic earthquakes with surface wave dispersion curves to image the structure of the forearc and magmatic arc of the Ecuadorian Andes. Our data set includes > 100 000 traveltimes recorded at 294 stations across Ecuador. Our images show the basement of the central forearc is composed of accreted oceanic terranes with high elastic wave speeds. Inboard of the Carnegie Ridge, the westernmost forearc and coastal cordilleras display relatively low Vp and Vs and high Vp/Vs values, which we attribute to the increased hydration and fracturing of the overriding plate due to the subduction of the thick oceanic crust of the Carnegie Ridge. We additionally image across-arc differences in magmatic architecture. The frontal volcanic arc overlies accreted terranes and is characterized by low velocities and high Vp/Vs indicative of partial melt reservoirs which are limited to the upper crust. In contrast, the main arc displays regions of partial melt across a wider range of depths. The Subandean zone of Ecuador has two active volcanoes built on continental crust suggesting the arc is expanding eastwards. The mid to lower crust does not show indications of being modified from the magmatic process. We infer that the slab is in the process of flattening as a consequence of early-stage subduction of the buoyant Carnegie Ridge.more » « less
-
New Zealand's Hikurangi margin is known for recurring shallow slow slip, numerous forearc seeps, and a productive volcanic arc. Fluids derived from the subducting slab are implicated in these processes. However, prior studies lacked evidence of basic crustal structure of the slab, or of its water content that would allow an assessment of fluid budgets. We review several recent studies that place bounds on the fluid reservoirs within the subducting Hikurangi Plateau that could be released between the forearc and backarc regions. Subducting sediments are thickest (> 1 km) in the southern Hikurangi margin, where there is a unit of turbidites beneath the regional proto decollement. These subducting sediments begin draining near the deformation front, resulting in a 20-30 % loss of volumetric fluid content. In contrast, the central and northern Hikurangi margins lack a continuous unit of subducting sediment. Here, lenses of poorly drained sediment underthrust the forearc in the wakes of seamount collisions. The Hikurangi Plateau's crustal structure resembles normal oceanic crust with a doubled upper crust of basalt and diabase. Above this upper crust is a ~1.5 km thick unit of hydrated volcaniclastic conglomerates. Seamounts can locally increase the upper crust's thickness by an extra ~1-3 km, raising the amount of porous, altered volcanic material. Finally, P-wave velocity models of the slab's upper mantle show velocity changes that could indicate moderate differences in serpentinization. Active bend-faults that could circulate fluids to the upper mantle are sparse prior to subduction. However, upon subduction the upper mantle seismic velocities of the Hikurangi Plateau are significantly less in the north compared to the south, possibly due to enhanced slab faulting beneath the forearc. Separate thermo-petrologic models for the shallow forearc and deeper subduction system suggests that fluid release from volcaniclastic units and the thickened Hikurangi Plateau upper crust is expected to occur over a range of depths extending from ~12 km to ~130 km, providing fluids for onshore seep systems and hydrous melting of the mantle wedge, whereas dehydration of serpentinite is greatest beyond the arc front. Subducting sediments and volcaniclastic units are the most readily available source of fluids for shallow slow slip.more » « less
-
Abstract Through the Alaska Transportable Array deployment of over 200 stations, we create a 3‐D tomographic model of Alaska with sensitivity ranging from the near surface (<1 km) into the upper mantle (~140 km). We perform a Markov chain Monte Carlo joint inversion of Rayleigh wave ellipticity and phase velocities, from both ambient noise and earthquake measurements, along with receiver functions to create a shear wave velocity model. We also use a follow‐up phase velocity inversion to resolve interstation structure. By comparing our results to previous tomography, geology, and geophysical studies we are able to validate our findings and connect localized near‐surface studies with deeper, regional models. Specifically, we are able to resolve shallow basins, including the Copper River, Cook Inlet, Yukon Flats, Nenana, and a variety of other shallower basins. Additionally, we gain insight on the interaction between the upper mantle wedge, asthenosphere, and active and nonactive volcanism along the Aleutians and Denali volcanic gap, respectively. We observe thicker crust beneath the Brooks Range and south of the Denali fault within the Wrangellia Composite Terrane and thinner crust in the Yukon Composite Terrane in interior Alaska. We also gain new perspective on the Wrangell Volcanic Field and its interaction between surrounding asthenosphere and the Yakutat Terrane.more » « less
-
Abstract The heterogeneous seafloor topography of the Nazca Plate as it enters the Ecuador subduction zone provides an opportunity to document the influence of seafloor roughness on slip behavior and megathrust rupture. The 2016 Mw7.8 Pedernales Ecuador earthquake was followed by a rich and active postseismic sequence. An internationally coordinated rapid response effort installed a temporary seismic network to densify coastal stations of the permanent Ecuadorian national seismic network. A combination of 82 onshore short and intermediate period and broadband seismic stations and six ocean bottom seismometers recorded the postseismic Pedernales sequence for over a year after the mainshock. A robust earthquake catalog combined with calibrated relocations for a subset of magnitude ≥4 earthquakes shows pronounced spatial and temporal clustering. A range of slip behavior accommodates postseismic deformation including earthquakes, slow slip events, and earthquake swarms. Models of plate coupling and the consistency of earthquake clustering and slip behavior through multiple seismic cycles reveal a segmented subduction zone primarily controlled by subducted seafloor topography, accreted terranes, and inherited structure. The 2016 Pedernales mainshock triggered moderate to strong earthquakes (5 ≤ M ≤ 7) and earthquake swarms north of the mainshock rupture close to the epicenter of the 1906 Mw8.8 earthquake and in the segment of the subduction zone that ruptured in 1958 in a Mw7.7 earthquake.more » « less
An official website of the United States government

