Through the Alaska Transportable Array deployment of over 200 stations, we create a 3‐D tomographic model of Alaska with sensitivity ranging from the near surface (<1 km) into the upper mantle (~140 km). We perform a Markov chain Monte Carlo joint inversion of Rayleigh wave ellipticity and phase velocities, from both ambient noise and earthquake measurements, along with receiver functions to create a shear wave velocity model. We also use a follow‐up phase velocity inversion to resolve interstation structure. By comparing our results to previous tomography, geology, and geophysical studies we are able to validate our findings and connect localized near‐surface studies with deeper, regional models. Specifically, we are able to resolve shallow basins, including the Copper River, Cook Inlet, Yukon Flats, Nenana, and a variety of other shallower basins. Additionally, we gain insight on the interaction between the upper mantle wedge, asthenosphere, and active and nonactive volcanism along the Aleutians and Denali volcanic gap, respectively. We observe thicker crust beneath the Brooks Range and south of the Denali fault within the Wrangellia Composite Terrane and thinner crust in the Yukon Composite Terrane in interior Alaska. We also gain new perspective on the Wrangell Volcanic Field and its interaction between surrounding asthenosphere and the Yakutat Terrane.
more » « less- NSF-PAR ID:
- 10456234
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Solid Earth
- Volume:
- 125
- Issue:
- 2
- ISSN:
- 2169-9313
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract We present two new seismic velocity models for Alaska from joint inversions of body-wave and ambient-noise-derived surface-wave data, using two different methods. Our work takes advantage of data from many recent temporary seismic networks, including the Incorporated Research Institutions for Seismology Alaska Transportable Array, Southern Alaska Lithosphere and Mantle Observation Network, and onshore stations of the Alaska Amphibious Community Seismic Experiment. The first model primarily covers south-central Alaska and uses body-wave arrival times with Rayleigh-wave group-velocity maps accounting for their period-dependent lateral sensitivity. The second model results from direct inversion of body-wave arrival times and surface-wave phase travel times, and covers the entire state of Alaska. The two models provide 3D compressional- (VP) and shear-wave velocity (VS) information at depths ∼0–100 km. There are many similarities as well as differences between the two models. The first model provides a clear image of the high-velocity subducting plate and the low-velocity mantle wedge, in terms of the seismic velocities and the VP/VS ratio. The statewide model provides clearer images of many features such as sedimentary basins, a high-velocity anomaly in the mantle wedge under the Denali volcanic gap, low VP in the lower crust under Brooks Range, and low velocities at the eastern edge of Yakutat terrane under the Wrangell volcanic field. From simultaneously relocated earthquakes, we also find that the depth to the subducting Pacific plate beneath southern Alaska appears to be deeper than previous models.more » « less
-
Abstract The crustal structure in south‐central Alaska has been influenced by terrane accretion, flat slab subduction, and a modern strike‐slip fault system. Within the active subduction system, the presence of the Denali Volcanic Gap (DVG), a ∼400 km region separating the active volcanism of the Aleutian Arc to the west and the Wrangell volcanoes to the east, remains enigmatic. To better understand the regional tectonics and the nature of the volcanic gap, we deployed a month‐long north‐south linear geophone array of 306 stations with an interstation distance of 1 km across the Alaska Range. By calculating multi‐component noise cross‐correlation and jointly inverting Rayleigh wave phase velocity and ellipticity across the array, we construct a 2‐D shear wave velocity model along the transect down to ∼16 km depth. In the shallow crust, we observe low‐velocity structures associated with sedimentary basins and image the Denali fault as a narrow localized low‐velocity anomaly extending to at least 12 km depth. About 12 km, below the fold and thrust fault system in the northern flank of the Alaska Range, we observe a prominent low‐velocity zone with more than 15% velocity reduction. Our velocity model is consistent with known geological features and reveals a previously unknown low‐velocity zone that we interpret as a magmatic feature. Based on this feature's spatial relationship to the Buzzard Creek and Jumbo Dome volcanoes and the location above the subducting Pacific Plate, we interpret the low‐velocity zone as a previously unknown subduction‐related crustal magma reservoir located beneath the DVG.
-
Abstract While variations in crustal structure beneath the Denali fault in Alaska are well‐documented, the existence of fault‐correlated structures throughout the entire thickness of the continental lithosphere is not. A new model of shear‐wave velocity structure obtained through joint inversion of surface wave and converted body wave data shows a northward increase in lithospheric thickness and velocity occurring across the Denali fault system. In northern Alaska, a dramatic increase in lithospheric thickness at the southern margin of the Arctic‐Alaska terrane lies in the vicinity of the Kobuk fault system. These correlations support the view that transpressive deformation tends to localize at the margins of thicker, higher‐strength lithosphere.
-
Abstract This study presents an azimuthally anisotropic shear wave velocity model of the crust and uppermost mantle beneath Alaska, based on Rayleigh wave phase speed observations from 10 to 80 s period recorded at more than 500 broadband stations. We test the hypothesis that a model composed of two homogeneous layers of anisotropy can explain these measurements. This “Two‐Layer Model” confines azimuthal anisotropy to the brittle upper crust along with the uppermost mantle from the Moho to 200 km depth. This model passes the hypothesis test for most of the region of study, from which we draw two conclusions. (a) The data are consistent with crustal azimuthal anisotropy being dominantly controlled by deformationally aligned cracks and fractures in the upper crust undergoing brittle deformation. (b) The data are also consistent with the uppermost mantle beneath Alaska and surroundings experiencing vertically coherent deformation. The model resolves several prominent features. (1) In the upper crust, fast directions are principally aligned with the orientation of major faults. (2) In the upper mantle, fast directions are aligned with the compressional direction in compressional tectonic domains and with the tensional direction in tensional domains. (3) The mantle fast directions located near the Alaska‐Aleutian subduction zone and the surrounding back‐arc area form a toroidal pattern that is consistent with mantle flow directions predicted by recent geodynamical models. Finally, the mantle anisotropy is remarkably consistent with SKS fast directions, but to fit SKS split times, anisotropy must extend below 200 km depth across most of the study region.
-
Abstract The along‐strike variations of the velocity, thickness, and dip of subducting slabs and the volcano distribution have been observed globally. It is, however, unclear what controls the distribution of volcanoes and the associated magma generation. With the presence of nonuniform volcanism, the Aleutian‐Alaska subduction zone (AASZ) is an ideal place to investigate subduction segmentation and its relationship with volcanism. Using full‐wave ambient noise tomography, we present a high‐resolution 3‐D shear wave velocity model of the AASZ for the depths of 15–110 km. The velocity model reveals the distinct high‐velocity Pacific slab, the thicker, flatter, and more heterogeneous Yakutat slab, and the northeasterly dipping Wrangell slab. We observe low velocities within the uppermost mantle (at depth <60 km) below the Aleutian arc volcanoes, representing partial melt accumulation. The large crustal low‐velocity anomaly beneath the Wrangell volcanic field suggests a large magma reservoir, likely responsible for the clustering of volcanoes. The Denali volcanic gap is above an average‐velocity crust but an extremely fast mantle wedge, suggesting the lack of subsurface melt. This is in contrast with the lower‐velocity back‐arc mantle beneath the adjacent Buzzard Creek‐Jumbo Dome volcanoes to the east. The back‐arc low velocities associated with the Pacific, the eastern Yakutat, and the Wrangell slabs may reflect subduction‐driven mantle upwelling. The structural variation of the downgoing slabs and the overriding plate explains the change of volcanic activity along the AASZ. Our findings demonstrate the combined role of the subducting slab and the overriding plate in controlling the characteristics of arc magmatism.