skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Promoting Equity and Inclusion in STEM Curriculum Design.
We describe a principled approach to designing STEM curricular activities that puts equity and inclusion (EI) at the forefront of the design process from its instantiation to its development. We illustrate this process using insights from designing a curriculum unit aligned with the US Next Generation Science Standards (NGSS) and an EI framework focused on supporting student engagement and use of language. The process identifies helpful ways to articulate design guidance for instructional designers.  more » « less
Award ID(s):
1742195
PAR ID:
10184089
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
In M. Gresalfi & I.S. Horn (Eds.). The Interdisciplinarity of the Learning Sciences, 14th International Conference of the Learning Sciences (ICLS) 2020
Volume:
3
Page Range / eLocation ID:
1747-1748
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The growing interest in autonomous driving calls for realistic simulation platforms capable of accurately simulating cooperative perception process in realistic traffic scenarios. Existing studies for cooperative perception often have not accounted for transmission latency and errors in real-world environments. To address this gap, we introduce EI-Drive (Edge Intelligent Drive), an Edge-AI based autonomous driving simulation platform that integrates advanced cooperative perception with more realistic communication models. Built on the CARLA framework, EI-Drive features new modules for cooperative perception while taking into account transmission latency and errors, providing a more realistic platform for evaluating cooperative perception algorithms. In particular, the platform enables vehicles to fuse data from multiple sources, improving situational awareness and safety in complex environments. With its modular design, EI-Drive allows for detailed exploration of sensing, perception, planning, and control in various cooperative driving scenarios. Experiments using EI-Drive demonstrate significant improvements in vehicle safety and performance, particularly in scenarios with complex traffic flow and network conditions. All code and documents are accessible on our GitHub page: \url{https://ucd-dare.github.io/eidrive.github.io/}. 
    more » « less
  2. Climate change demands urgent action, yet understanding the environmental impact (EI) of everyday objects and activities remains challenging for the general public. While Life Cycle Assessment (LCA) offers a comprehensive framework for EI analysis, its traditional implementation requires extensive domain expertise, structured input data, and significant time investment, creating barriers for non-experts seeking real-time sustainability insights. Here we present the first autonomous sustainability assessment tool that bridges this gap by transforming unstructured natural language descriptions into in-context, interactive EI visualizations. Our approach combines language modeling and AI agents, and achieves >97% accuracy in transforming natural language into a data abstraction designed for simplified LCA modeling. The system employs a non-parametric datastore to integrate proprietary LCA databases while maintaining data source attribution and allowing personalized source management. We demonstrate through case studies that our system achieves results within 11% of traditional full LCA, while accelerating from hours of expert time to real-time. We conducted a formative elicitation study (N=6) to inform the design objectives of such EI communication augmentation tools. We implemented and deployed the tool as a Chromium browser extension and further evaluated it through a user study (N=12). This work represents a significant step toward democratizing access to environmental impact information for the general public with zero LCA expertise. 
    more » « less
  3. Embodied Interaction (EI) offers unique opportunities to uncover novel ways to achieve experiential learning whilst keeping students stimulated and engaged. Spatial abilities have been repeatedly demonstrated as a success predictor for educations and professions in Science, Technology, Engineering and Mathematics. However, many researchers argue that training and assessment of this pertinent reasoning skill is vastly underrepresented in the school curriculum. This paper presents TetRotation, a PhD centred on how affordances coming from Multimodal Analytics can be coupled with EI to nurture Mental Rotation (MR) skills. The overarching objectives of the project are two fold. First, the TetRotation Interaction Design study will highlight best practices identified through the assessment of efficiency, level of engagement and learning gains achieved when using gesture based EI to solve MR tasks. Next, in the TetRotation Game study, these design practices will guide the implementation of an interactive serious game purposed to support the development of MR skills. This research relies on mixed method techniques, including data collections from users' actions, like motion sensing, EEG, gaze tracking, video-recordings, click streams, interviews and surveys. 
    more » « less
  4. Abstract BackgroundPractitioner and family experiences of pediatric re/habilitation can be inequitable. The Young Children’s Participation and Environment Measure (YC-PEM) is an evidence-based and promising electronic patient-reported outcome measure that was designed with and for caregivers for research and practice. This study examined historically minoritized caregivers’ responses to revised YC-PEM content modifications and their perspectives on core intelligent virtual agent functionality needed to improve its reach for equitable service design. MethodsCaregivers were recruited during a routine early intervention (EI) service visit and met five inclusion criteria: (1) were 18 + years old; (2) identified as the parent or legal guardian of a child 0–3 years old enrolled in EI services for 3 + months; (3) read, wrote, and spoke English; (4) had Internet and telephone access; and (5) identified as a parent or legal guardian of a Black, non-Hispanic child or as publicly insured. Three rounds of semi-structured cognitive interviews (55–90 min each) used videoconferencing to gather caregiver feedback on their responses to select content modifications while completing YC-PEM, and their ideas for core intelligent virtual agent functionality. Interviews were transcribed verbatim, cross-checked for accuracy, and deductively and inductively content analyzed by multiple staff in three rounds. ResultsEight Black, non-Hispanic caregivers from a single urban EI catchment and with diverse income levels (Mdn = $15,001–20,000) were enrolled, with children (M = 21.2 months,SD = 7.73) enrolled in EI. Caregivers proposed three ways to improve comprehension (clarify item wording, remove or simplify terms, add item examples). Environmental item edits prompted caregivers to share how they relate and respond to experiences with interpersonal and institutional discrimination impacting participation. Caregivers characterized three core functions of a virtual agent to strengthen YC-PEM navigation (read question aloud, visual and verbal prompts, more examples and/or definitions). ConclusionsResults indicate four ways that YC-PEM content will be modified to strengthen how providers screen for unmet participation needs and determinants to design pediatric re/habilitation services that are responsive to family priorities. Results also motivate the need for user-centered design of an intelligent virtual agent to strengthen user navigation, prior to undertaking a community-based pragmatic trial of its implementation for equitable practice. 
    more » « less
  5. null (Ed.)
    Edge intelligence (EI) has received a lot of interest because it can reduce latency, increase efficiency, and preserve privacy. More significantly, as the Internet of Things (IoT) has proliferated, billions of portable and embedded devices have been interconnected, producing zillions of gigabytes on edge networks. Thus, there is an immediate need to push AI (artificial intelligence) breakthroughs within edge networks to achieve the full promise of edge data analytics. EI solutions have supported digital technology workloads and applications from the infrastructure level to edge networks; however, there are still many challenges with the heterogeneity of computational capabilities and the spread of information sources. We propose a novel event-driven deep-learning framework, called EDL-EI (event-driven deep learning for edge intelligence), via the design of a novel event model by defining events using correlation analysis with multiple sensors in real-world settings and incorporating multi-sensor fusion techniques, a transformation method for sensor streams into images, and lightweight 2-dimensional convolutional neural network (CNN) models. To demonstrate the feasibility of the EDL-EI framework, we presented an IoT-based prototype system that we developed with multiple sensors and edge devices. To verify the proposed framework, we have a case study of air-quality scenarios based on the benchmark data provided by the USA Environmental Protection Agency for the most polluted cities in South Korea and China. We have obtained outstanding predictive accuracy (97.65% and 97.19%) from two deep-learning models on the cities’ air-quality patterns. Furthermore, the air-quality changes from 2019 to 2020 have been analyzed to check the effects of the COVID-19 pandemic lockdown. 
    more » « less