skip to main content


Title: Classification of 5d N=1 gauge theories
We classify 5d N=1 gauge theories carrying a simple gauge group that can arise by mass-deforming 5d SCFTs and 6d SCFTs (compactified on a circle, possibly with a twist). For theories having a 6d UV completion, we determine the tensor branch data of the 6d SCFT and capture the twist in terms of the tensor branch data. We also determine the dualities between these 5d gauge theories, thus determining the sets of gauge theories having a common UV completion.  more » « less
Award ID(s):
1719924
NSF-PAR ID:
10184470
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Page Range / eLocation ID:
1 - 118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study 6d superconformal field theories (SCFTs) compactified on a circle with arbitrary twists. The theories obtained after compactification, often referred to as 5d Kaluza-Klein (KK) theories, can be viewed as starting points for RG flows to 5d SCFTs. According to a conjecture, all 5d SCFTs can be obtained in this fashion. We compute the Coulomb branch prepotential for all 5d KK theories obtainable in this manner and associate to these theories a smooth local genus one fibered Calabi-Yau threefold in which is encoded information about all possible RG flows to 5d SCFTs. These Calabi-Yau threefolds provide hitherto unknown M-theory duals of F-theory configurations compactified on a circle with twists. For certain exceptional KK theories that do not admit a standard geometric description we propose an algebraic description that appears to retain the properties of the local Calabi-Yau threefolds necessary to determine RG flows to 5d SCFTs, along with other relevant physical data. 
    more » « less
  2. We provide a new extension to the geometric construction of 6d (1, 0) SCFTs that encap- sulates Higgs branch structures with identical global symmetry but different spectra. In particular, we find that there exist distinct 6d (1, 0) SCFTs that may appear to share their tensor branch description, flavor symmetry algebras, and central charges. For example, such subtleties arise for the very even nilpotent Higgsing of (so4k,so4k) conformal matter; we pro- pose a method to predict at which conformal dimension the Higgs branch operators of the two theories differ via augmenting the tensor branch description with the Higgs branch chiral ring generators of the building block theories. Torus compactifications of these 6d (1, 0) SCFTs give rise to 4d N = 2 SCFTs of class S and the Higgs branch of such 4d theories are cap- tured via the Hall–Littlewood index. We confirm that the resulting 4d theories indeed differ in their spectra in the predicted conformal dimension from their Hall–Littlewood indices. We highlight how this ambiguity in the tensor branch description arises beyond the very even nilpotent Higgsing of (so4k,so4k) conformal matter, and hence should be understood for more general classes of 6d (1, 0) SCFTs. 
    more » « less
  3. We investigate global symmetries for 6D SCFTs and LSTs having a single “unpaired” tensor, that is, a tensor with no associated gauge symmetry. We verify that for every such theory built from F‐theory whose tensor has Dirac self‐pairing equal to −1, the global symmetry algebra is a subalgebra of. This result is new if the F‐theory presentation of the theory involves a one‐parameter family of nodal or cuspidal rational curves (i.e., Kodaira typesI1orII) rather than elliptic curves (Kodaira typeI0). For such theories, this condition on the global symmetry algebra appears to fully capture the constraints on coupling these theories to others in the context of multi‐tensor theories. We also study the analogous problem for theories whose tensor has Dirac self‐pairing equal to −2 and find that the global symmetry algebra is a subalgebra of. However, in this case there are additional constraints on F‐theory constructions for coupling these theories to others.

     
    more » « less
  4. We revisit the correspondence between Calabi-Yau (CY) threefoldisolated singularities \mathbf{X} 𝐗 and five-dimensional superconformal field theories (SCFTs), which ariseat low energy in M-theory on the space-time transverse to \mathbf{X} 𝐗 .Focussing on the case of toric CY singularities, we analyze the“gauge-theory phases” of the SCFT by exploiting fiberwise M-theory/typeIIA duality. In this setup, the low-energy gauge group simply arises onstacks of coincident D6-branes wrapping 2-cycles in some ALE space oftype A_{M-1} A M − 1 fibered over a real line, and the map between the Kähler parameters of \mathbf{X} 𝐗 and the Coulomb branch parameters of the field theory (masses and VEVs)can be read off systematically. Different type IIA “reductions” giverise to different gauge theory phases, whose existence depends on theparticular (partial) resolutions of the isolated singularity \mathbf{X} 𝐗 .We also comment on the case of non-isolated toric singularities.Incidentally, we propose a slightly modified expression for theCoulomb-branch prepotential of 5d \mathcal{N}=1 𝒩 = 1 gauge theories. 
    more » « less
  5. We present examples of 5d SCFTs that serve as counter-examples to a recently actively studied conjecture according to which it should be possible to obtain all 5d SCFTs by integrating out BPS particles from 6d SCFTs compactified on a circle. We further observe that it is possible to obtain these 5d SCFTs from 6d SCFTs if one allows integrating out BPS strings as well. Based on this observation, we propose a revised version of the conjecture according to which it should be possible to obtain all 5d SCFTs by integrating out both BPS particles and BPS strings from 6d SCFTs compactified on a circle. We describe a general procedure to integrate out BPS strings from a 5d theory once a geometric description of the 5d theory is given. We also discuss the consequences of the revised conjecture for the classification program of 5d SCFTs. 
    more » « less