Abstract Climate-smart agriculture can be used to build soil carbon stocks, decrease agricultural greenhouse gas (GHG) emissions, and increase agronomic resilience to climate pressures. The US recently declared its commitment to include the agricultural sector as part of an overall climate-mitigation strategy, and with this comes the need for robust, scientifically valid tools for agricultural GHG flux measurements and modeling. If agriculture is to contribute significantly to climate mitigation, practice adoption should be incentivized on as much land area as possible and mitigation benefits should be accurately quantified. Process-based models are parameterized on data from a limited number of long-term agricultural experiments, which may not fully reflect outcomes on working farms. Space-for-time substitution, paired studies, and long-term monitoring of SOC stocks and GHG emissions on commercial farms using a variety of climate-smart management systems can validate findings from long-term agricultural experiments and provide data for process-based model improvements. Here, we describe a project that worked collaboratively with commercial producers in the Midwest to directly measure and model the soil organic carbon (SOC) stocks of their farms at the field scale. We describe this study, and several unexpected challenges encountered, to facilitate further on-farm data collection and the creation of a secure database of on-farm SOC stock measurements.
more »
« less
Coproduction of solar energy on maize farms – experimental validation of recent experiments
Abstract—Developing methods for the sustainable coproduction of food, energy and water resources has recently been recognized as a potentially attractive solution to meeting the needs of a growing population. However, many studies have used models, but have not performed an actual experiment to directly validate all their predictions. Here, we report a recently-constructed test site on the ACRE farm in West Lafayette, Indiana, consisting of single-axis trackers in a novel configuration atop a maize test plot. We present a methodology to measure irradiance therein with 10-minute temporal resolution, which allows us to validate prior PV aglectric farm irradiance models. Keywords—aglectric, agrophotovoltaic, agrivoltaic, photovoltaic
more »
« less
- Award ID(s):
- 1735282
- PAR ID:
- 10184487
- Date Published:
- Journal Name:
- Coproduction of solar energy on maize farms – experimental validation of recent experiments
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Livestock agriculture accounts for ∼15% of global anthropogenic greenhouse gas (GHG) emissions. Recently, natural climate solutions (NCS) have been identified to mitigate farm‐scale GHG emissions. Nevertheless, their impacts are difficult to quantify due to farm spatial heterogeneity and effort required to measure changes in carbon stocks. Remote sensing (RS) models are difficult to parameterize for heterogeneous agricultural landscapes. Eddy covariance (EC) in combination with novel techniques that quantitatively match source area variations could help update such vegetation‐specific parameters while accounting for pronounced heterogeneity. We evaluate a plant physiological parameter, the maximum quantum yield (MQY), which is commonly used to calculate gross and net primary productivity in RS applications. RS models often rely on spatially invariable MQY, which leads to inconsistencies between RS and EC models. We evaluate if EC data improve RS models by updating crop specific MQYs to quantify agricultural GHG mitigation potentials. We assessed how farm harvest compared to annual sums of (a) RS without improvements, (b) EC results, and (c) EC‐RS models. We then estimated emissions to calculate the annual GHG balance, including mitigation through plant carbon uptake. Our results indicate that EC‐RS models significantly improved the prediction of crop yields. The EC model captures diurnal variations in carbon dynamics in contrast to RS models based on input limitations. A net zero GHG balance indicated that perennial vegetation mitigated over 60% of emissions while comprising 40% of the landscape. We conclude that the combination of RS and EC can improve the quantification of NCS in agroecosystems.more » « less
-
Modern industrial processes are continuously monitored by a large number of sensors. Despite having access to large volumes of historical and online sensor data, industrial practitioners still face challenges in the era of Industry 4.0 in effectively utilizing them to perform online process monitoring and fast fault detection and diagnosis. To target these challenges, in this work, we present a novel framework named "FARM" for Fast, Accurate, and Robust online process Monitoring. FARM is a holistic monitoring framework that integrates (a) advanced multivariate statistical process control (SPC) for fast anomaly detection of nonparametric, heterogeneous data streams, and (b) modified support vector machine (SVM) for accurate and robust fault classification. Unlike existing general-purpose process monitoring frameworks, FARM's unique hierarchical architecture decomposes process monitoring into two fault detection and diagnosis, each of which is conducted by targeted algorithms. Here, we test and validate the performance of our FARM monitoring framework on Tennessee Eastman Process (TEP) benchmark dataset. We show that SPC achieves faster fault detection speed at a lower false alarm rate compared to state-of-the-art benchmark fault detection methods. In terms of fault classification diagnosis, we show that our modified SVM algorithm successfully classifies 17 out of 20 of the fault scenarios present in the TEP dataset. Compared with the results of standard SVM trained directly on the original dataset, our modified SVM improves the fault classification accuracy significantly.more » « less
-
In this paper, we demonstrate methods to extract dq admittance for a solar photovoltaic (PV) farm from its black-box model used for electromagnetic transient (EMT) simulation. Each dq admittance corresponds to a certain operating condition. Based on the dq admittance, analysis is carried out to evaluate how grid strength and solar irradiance may influence stability. Two types of stability analysis methods (open-loop system based and closed-loop system based) are examined and both can deal with dq admittance's frequency-domain measurements directly and produce graphics for stability analysis. The findings based on dq admittance-based analysis are shown to corroborate EMT simulation results.more » « less
-
null (Ed.)High transportation costs make energy and food expensive in remote communities worldwide, especially in high-latitude Arctic climates. Past attempts to grow food indoors in these remote areas have proven uneconomical due to the need for expensive imported diesel for heating and electricity. This study aims to determine whether solar photovoltaic (PV) electricity can be used affordably to power container farms integrated with a remote Arctic community microgrid. A mixed-integer linear optimization model (FEWMORE: Food–Energy–Water Microgrid Optimization with Renewable Energy) has been developed to minimize the capital and maintenance costs of installing solar photovoltaics (PV) plus electricity storage and the operational costs of purchasing electricity from the community microgrid to power a container farm. FEWMORE expands upon previous models by simulating demand-side management of container farm loads. Its results are compared with those of another model (HOMER) for a test case. FEWMORE determined that 17 kW of solar PV was optimal to power the farm loads, resulting in a total annual cost decline of ~14% compared with a container farm currently operating in the Yukon. Managing specific loads appropriately can reduce total costs by ~18%. Thus, even in an Arctic climate, where the solar PV system supplies only ~7% of total load during the winter and ~25% of the load during the entire year, investing in solar PV reduces costs.more » « less
An official website of the United States government

