skip to main content


Search for: All records

Award ID contains: 1735282

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Chalcogenide perovskites have garnered interest for applications in semiconductor devices due to their excellent predicted optoelectronic properties and stability. However, high synthesis temperatures have historically made these materials incompatible with the creation of photovoltaic devices. Here, we demonstrate the solution processed synthesis of luminescent BaZrS3and BaHfS3chalcogenide perovskite films using single‐phase molecular precursors at sulfurization temperatures of 575 °C and sulfurization times as short as one hour. These molecular precursor inks were synthesized using known carbon disulfide insertion chemistry to create Group 4 metal dithiocarbamates, and this chemistry was extended to create species, such as barium dithiocarboxylates, that have never been reported before. These findings, with added future research, have the potential to yield fully solution processed thin films of chalcogenide perovskites for various optoelectronic applications.

     
    more » « less
  2. Abstract

    The addition of cesium into Cu(In,Ga)(S,Se)2‐short CIGSSe‐absorber layers (fabricated via vacuum deposition methods), has most recently culminated in devices with record power conversion efficiencies up to 23.4%. However, research is increasingly being devoted to the development of ink deposition routes to prepare high‐quality CIGSSe thin films while requiring only a fraction of the processing costs. Such non‐vacuum deposition routes must compete with efficiencies of incumbent technologies to find adoption on a wide scale. At present, the performance of ink‐based devices still fall short of their vacuum counterparts with certified champion cell efficiencies up to 17.7%. The recent performance progression for vacuum‐processed CIGSSe exemplifies the importance of controlling the concentration of extrinsic impurities and serves as an inspiration for gains (e.g., morphological, optoelectronic) for devices with ink‐based absorber layers. This article reviews extrinsic doping concepts for CIGSSe‐type absorbers fabricated by ink‐based deposition routes (both nanoparticle dispersions and molecular inks), provides a performance comparison of select high‐efficiency ink‐based devices, and offers an outlook for future process development in general. It is suggested that the mechanisms by which dopant atoms diffuse, interact, and alter the properties of an ink‐based absorber are fundamentally different than those fabricated from vacuum‐based processes, and require further investigation.

     
    more » « less
  3.  
    more » « less
  4. Solution processing of CuInSe 2 /CuInGaSe 2 (CISe/CIGSe) photovoltaic devices via non-hydrazine based routes has been studied for the past few years and a significant improvement in the device performance has been achieved for multiple solvent routes. However, none of these routes have ever reported the fabrication of absorbers with a thickness of above 1.2–1.3 microns which is almost half of what has been traditionally used in vacuum based high efficiency CIGSe devices. The main reason for this limitation is associated with the formation of a fine-grain layer in solution based systems. Here we manipulate the formation of such a fine-grain layer in an amine–thiol based solution route through surface modifications at the bottom Mo interface and achieve an active area efficiency of up to 14.1% for CIGSe devices. Furthermore, with a detailed analysis of the fine-grain layer, not just in the amine–thiol based film, but also in the film fabricated via the dimethylformamide-thiourea route, we identify the reason for the formation of such a fine-grain layer as the presence of the sulfide material and carbon impurity (if any) in the precursor film. We utilize the amine–thiol solvent system's ability for selenium and metal selenide dissolution to manipulate the ink formulations and demonstrate the reduction in the formation of sulfide materials as well as the extent of trapped carbon in the precursor film. With modified precursor films, we then successfully grow CISe/CIGSe thin films of 2-micron thickness with the complete absence of a fine-grain layer through a high temperature, thickness independent bulk growth mechanism making the film morphology similar to the one fabricated using a high efficiency hydrazine based route. 
    more » « less
  5. A dielectric mirror with high infrared reflection and high visible transmission, based on an easily fabricated stepped index rugate filter structure, is presented. Its fabrication involves sputtering depositions, using only two targets, to make five different material compositions. The ultra-wide reflection band is tunable in both position and width, adapting the thickness of the layers and eventually introducing chirped layers. When applied to evacuated solar thermal devices, efficiency improvements of up to 30% can be achieved, making this mirror an attractive solution for reducing radiative losses through the cold-side photon recycling mechanism.

     
    more » « less