skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of three essential sub-micrometer aerosol measurements: Mass, size and shape
An instrumental trifecta now exists for aerosol separation and classification by aerodynamic diameter (Dae), mobility diameter (Dm) and mass (m) utilizing an aerodynamic aerosol classifier (AAC), differential mobility analyzer (DMA) and aerosol particle mass analyzer (APM), respectively. In principle, any combination of two measurements yields the third. These quantities also allow for the derivation of the particle effective density (ρeff) and dynamic shape factor (χ). Measured and/or derived deviations between tandem measurements are dependent upon the configuration but are generally less than 10 %. Notably, non-physical values of χ (< 1) and ρeff (> bulk) were determined by the AAC-APM. Harmonization of the results requires the use of χ in the determination of m and Dm from the AAC-DMA and AAC-APM requiring either a priori assumptions or determination from another method. Further errors can arise from assuming instead of measuring physical conditions – e.g. temperature and pressure affect the gas viscosity, mean free path and the Cunningham slip correction factor therefore impacting Dm, Dae – but are expected to have a smaller impact than χ. Utilizing this triplet of instrumentation in combination allows for quantitative determination of χ and the particle density (ρp). If the bulk density is known or assumed, then the packing density can be determined. The χ and ρp were determined to be 1.10 ± 0.03 and (1.00 ± 0.02) g cm-3, respectively, for a water stabilized black carbon mimic that resembles aged (collapsed) soot in the atmosphere. Assuming ρbulk = 1.8 g cm 3, a packing density of 0.55 ± 0.02 is obtained.  more » « less
Award ID(s):
1708337
PAR ID:
10184492
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Aerosol Science and Technology
ISSN:
0278-6826
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The aerodynamic aerosol classifier (AAC) is a novel instrument that size-selects aerosol particles based on their mechanical mobility. So far, the application of an AAC for cloud condensation nuclei (CCN) activity analysis of aerosols has yet to be explored. Traditionally, a differential mobility analyzer (DMA) is used for aerosol classification in a CCN experimental setup. A DMA classifies particles based on their electrical mobility. Substituting the DMA with an AAC can eliminate multiple-charging artifacts as classification using an AAC does not require particle charging. In this work, we describe an AAC-based CCN experimental setup and CCN analysis method. We also discuss and develop equations to quantify the uncertainties associated with aerosol particle sizing. To do so, we extend the AAC transfer function analysis and calculate the measurement uncertainties of the aerodynamic diameter from the resolution of the AAC. The analysis framework has been packaged into a Python-based CCN Analysis Tool (PyCAT 1.0) open-source code, which is available on GitHub for public use. Results show that the AAC size-selects robustly (AAC resolution is 10.1, diffusion losses are minimal, and particle transmission is high) at larger aerodynamic diameters (≥∼ 85 nm). The size-resolved activation ratio is ideally sigmoidal since no charge corrections are required. Moreover, the uncertainties in the critical particle aerodynamic diameter at a given supersaturation can propagate through droplet activation, and the subsequent uncertainties with respect to the single-hygroscopicity parameter (κ) are reported. For a known aerosol such as sucrose, the κ derived from the critical dry aerodynamic diameter can be up to ∼ 50 % different from the theoretical κ. In this work, we do additional measurements to obtain dynamic shape factor information and convert the sucrose aerodynamic to volume equivalent diameter. The volume equivalent diameter applied to κ-Köhler theory improves the agreement between measured and theoretical κ. Given the limitations of the coupled AAC–CCN experimental setup, this setup is best used for low-hygroscopicity aerosol (κ≤0.2) CCN measurements. 
    more » « less
  2. Mobility-based aerosol size distributions from the TSI 3081 Differential Mobility Analyzer (DMA) that was deployed on the NSF NCAR C-130 aircraft for the CAESAR campaign. The DMA was in scanning mobility particle sizer (SMPS) mode. 
    more » « less
  3. This dataset includes aerosol microphysics and chemical measurements collected at Mt. Soledad and Scripps Pier during the Eastern Pacific Cloud Aerosol Precipitation Experiment (EPCAPE) from February 2023 to February 2024. The measurements include the following instruments at Mt. Soledad: High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS, Aerodyne), Scanning Electrical Mobility Spectrometer (SEMS, Brechtel Manufacturing Inc.), Aerodynamic Particle Sizer (APS, Droplet Measurements Technologies), Single Particle Soot Photometer (SP2, Drople Measurements Technologies), Meteorological Station (WXT520, Vaisala), Ozone (Teco), and trace gas proxies (Teledyne). In addition, the analyses of particle filters collected at Mt. Soledad for three dry-diameter size cuts (<1 micron, <0.5 micron, <0.18 micron) and at Scripps Pier for one dry-diametr size cut (<1 micron) by Fourier Transform Infrared (FTIR) and X-ray Fluorescence (XRF) are reported. A differential mobility analyzer operated as a scanning mobility particle sizer (SMPS, TSI Inc.), a printed particle optical spectrometer (POPS, Grimm), and a continuous flow diffusion cloud condensation nuclei (CCN, DMT) counter provide the mobility aerosol size distribution (30-360 nm), optical size distribution (150 - 6000 nm), size-resolved CCN distribution (30-360 nm) at 0.2, 0.4, 0.6, 0.8, and 1.0% supersaturation. Measurements are reported for both sampling from an isokinetic aerosol inlet and from a Counterflow Virtual Impactor (CVI, Brechtel Manufacturing Inc.). Users of these measurements are encouraged to consult with the authors about appropriate interpretation before submitting for publication, offering coauthorship where appropriate. 
    more » « less
  4. Nitrogen-containing Organic Carbon (NOC) is a major constituent of atmospheric aerosols and they have received significant attention in the atmospheric science community. While extensive research and advancements have been made regarding their emission sources, concentrations, and their secondary formation in the atmosphere, little is known about their water uptake efficiencies and their subsequent role in climate, air quality, and visibility. In this study, we investigated the water uptake of two sparingly soluble aromatic NOCs: o -aminophenol (oAP) and p -aminophenol (pAP) under subsaturated and supersaturated conditions using a Hygroscopicity Tandem Differential Mobility Analyzer (H-TDMA) and a Cloud Condensation Nuclei Counter (CCNC), respectively. Our results show that oAP and pAP are slightly hygroscopic with comparable hygroscopicities to various studied organic aerosols. The supersaturated single hygroscopicity parameter ( κ CCN ) was measured and reported to be 0.18 ± 0.05 for oAP and 0.04 ± 0.02 for pAP, indicating that oAP is more hygroscopic than pAP despite them having the same molecular formulae. The observed disparity in hygroscopicity is attributed to the difference in functional group locations, interactions with gas phase water molecules, and the reported bulk water solubilities of the NOC. Under subsaturated conditions, both oAP and pAP aerosols showed size dependent water uptake. Both species demonstrated growth at smaller dry particle sizes, and shrinkage at larger dry particle sizes. The measured growth factor ( G f ) range, at RH = 85%, for oAP was 1.60–0.74 and for pAP was 1.53–0.74 with increasing particle size. The growth and shrinkage dichotomy is attributed to morphological particle differences verified by TEM images of small and large particles. Subsequently, aerosol physicochemical properties must be considered to properly predict the droplet growth of NOC aerosols in the atmosphere. 
    more » « less
  5. Abstract. Particle size measurement in the low nanometer regime is of great importance to the study of cloud condensation nuclei formation and to better understand aerosol–cloud interactions. Here we present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument that probes particle physical properties in the 1.5–25 nm range. The nSEMS consists of a novel differential mobility analyzer and a two-stage condensation particle counter (CPC). The mobility analyzer, a radial opposed-migration ion and aerosol classifier (ROMIAC), can classify nanometer-sized particles with minimal degradation of its resolution and diffusional losses. The ROMIAC operates on a dual high-voltage supply with fast polarity-switching capability to minimize sensitivity to variations in the chemical nature of the ions used to charge the aerosol. Particles transmitted through the mobility analyzer are measured using a two-stage CPC. They are first activated in a fast-mixing diethylene glycol (DEG) stage before being counted by a second detection stage, an ADI MAGIC™ water-based CPC. The transfer function of the integrated instrument is derived from both finite-element modeling and experimental characterization. The nSEMS performance has been evaluated during measurement of transient nucleation and growth events in the CLOUD atmospheric chamber at CERN. We show that the nSEMS can provide high-time- and size-resolution measurement of nanoparticles and can capture the critical aerosol dynamics of newly formed atmospheric particles. Using a soft x-ray bipolar ion source in a compact housing designed to optimize both nanoparticle charging and transmission efficiency as a charge conditioner, the nSEMS has enabled measurement of the contributions of both neutral and ion-mediated nucleation to new particle formation. 
    more » « less