Sustainable cities depend on urban forests. City trees—pillars of urban forests—improve our health, clean the air, store CO2, and cool local temperatures. Comparatively less is known about city tree communities as ecosystems, particularly regarding spatial composition, species diversity, tree health, and the abundance of introduced species. Here, we assembled and standardized a new dataset ofN= 5,660,237 trees from 63 of the largest US cities with detailed information on location, health, species, and whether a species is introduced or naturally occurring (i.e., “native”). We further designed new tools to analyze spatial clustering and the abundance of introduced species. We show that trees significantly cluster by species in 98% of cities, potentially increasing pest vulnerability (even in species-diverse cities). Further, introduced species significantly homogenize tree communities across cities, while naturally occurring trees (i.e., “native” trees) comprise 0.51–87.4% (median = 45.6%) of city tree populations. Introduced species are more common in drier cities, and climate also shapes tree species diversity across urban forests. Parks have greater tree species diversity than urban settings. Compared to past work which focused on canopy cover and species richness, we show the importance of analyzing spatial composition and introduced species in urban ecosystems (and we develop new tools and datasets to do so). Future work could analyze city trees alongside sociodemographic variables or bird, insect, and plant diversity (e.g., from citizen-science initiatives). With these tools, we may evaluate existing city trees in new, nuanced ways and design future plantings to maximize resistance to pests and climate change. We depend on city trees.
more »
« less
Analyzing Domain Knowledge for Big Data Analysis: A Case Study with Urban Tree Type Classification.
The goals of this research were to create a labeled dataset of tree shadows and to test the feasibility of shadow-based tree type identification using aerial imagery. Urban tree big data that provides information about individual trees can help city planners optimize positive benefits of urban trees (e.g., increasing wellbeing of city residents) while managing potential negative impacts (e.g., risk to power lines). The continual rise of tree type specific threats, such as emerald ash borer, due to climate change has made this problem more pressing in recent years. However, urban tree big data are time consuming to create. This paper evaluates the potential of a new tree type identification method that utilizes shadows in aerial imagery to survey larger regions of land in a shorter amount of time. This work is challenging because there are structural variations across a given tree type and few verified tree type identification datasets exist. Related work has not explored how tree structure characteristics translate into a profile view of a tree’s shadow or quantified the feasibility of shadow-only based tree type identification. We created a consistent and accurate dataset of 4,613 tree shadows using ground truthing procedures and novel methods for ensuring consistent collection of spatial shadow data that take binary and spatial agreement between raters into account. Our results show that identifying trees from shadows in aerial imagery is feasible and merits further exploration in the future.
more »
« less
- Award ID(s):
- 1737633
- PAR ID:
- 10184558
- Date Published:
- Journal Name:
- Big Data Analytics. BDA 2019. Lecture Notes in Computer Science
- Volume:
- 11932
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Tree Baltimore (treebaltimore.org) hired Davey Tree to conduct a census of all publicly owned trees and tree pits in the city of Baltimore. This census was completed by arborists in 2017-2018, documenting over 192,000 trees and potential tree sites that reflect the public component of Baltimore’s urban forest. Entries in this dataset include trees in parkways (street trees), mown areas of public parks (forest patches excluded), meridian trees, and vacant spaces for tree planting. Data is continuously updated and the current vintage can be found at https://baltimore.maps.arcgis.com/apps/webappviewer/index.html?id=d2cfbbe9a24b4d988de127852e6c26c8.more » « less
-
null (Ed.)Recent advances in big spatial data acquisition and deep learning allow novel algorithms that were not possible several years ago. We introduce a novel inverse procedural modeling algorithm for urban areas that addresses the problem of spatial data quality and uncertainty. Our method is fully automatic and produces a 3D approximation of an urban area given satellite imagery and global-scale data, including road network, population, and elevation data. By analyzing the values and the distribution of urban data, e.g., parcels, buildings, population, and elevation, we construct a procedural approximation of a city at a large-scale. Our approach has three main components: (1) procedural model generation to create parcel and building geometries, (2) parcel area estimation that trains neural networks to provide initial parcel sizes for a segmented satellite image of a city block, and (3) an optional optimization that can use partial knowledge of overall average building footprint area and building counts to improve results. We demonstrate and evaluate our approach on cities around the globe with widely different structures and automatically yield procedural models with up to 91,000 buildings, and spanning up to 150 km 2 . We obtain both a spatial arrangement of parcels and buildings similar to ground truth and a distribution of building sizes similar to ground truth, hence yielding a statistically similar synthetic urban space. We produce procedural models at multiple scales, and with less than 1% error in parcel and building areas in the best case as compared to ground truth and 5.8% error on average for tested cities.more » « less
-
Wang, Yuyan (Ed.)Urban street trees offer cities critical environmental and social benefits. In New York City (NYC), a decadal census of every street tree is conducted to help understand and manage the urban forest. However, it has previously been impossible to analyze growth of an individual tree because of uncertainty in tree location. This study overcomes this limitation using a three-step alignment process for identifying individual trees with ZIP Codes, address, and species instead of map coordinates. We estimated individual growth rates for 126,362 street trees (59 species and 19% of 2015 trees) using the difference between diameter at breast height (DBH) from the 2005 and 2015 tree censuses. The tree identification method was verified by locating and measuring the DBH of select trees and measuring a set of trees annually for over 5 years. We examined determinants of tree growth rates and explored their spatial distribution. In our newly created NYC tree growth database, fourteen species have over 1000 unique trees. The three most abundant tree species vary in growth rates; London Planetree (n = 32,056, 0.163 in/yr) grew the slowest compared to Honeylocust (n = 15,967, 0.356 in/yr), and Callery Pear (n = 15,902, 0.334 in/yr). Overall, Silver Linden was the fastest growing species (n = 1,149, 0.510 in/yr). Ordinary least squares regression that incorporated biological factors including size and the local urban form indicated that species was the major factor controlling growth rates, and tree stewardship had only a small effect. Furthermore, tree measurements by volunteer community scientists were as accurate as those made by NYC staff. Examining city wide patterns of tree growth indicates that areas with a higher Social Vulnerability Index have higher than expected growth rates. Continued efforts in street tree planting should utilize known growth rates while incorporating community voices to better provide long-term ecosystem services across NYC.more » « less
-
Landscape analyses are typically done using spatially explicit color aerial imagery. However, working with non-spatial black and white historical aerial photographs presents several challenges that require a combination of techniques and approaches. We analyzed 113 aerial images covering approx. 700 km2 (270 mi2) including all of Baltimore City, and a portion of Baltimore County surrounding the City. The images were taken between August 23rd 1952 and February 14th 1953. High-resolution scans were georeferenced and georectified against modern satellite imagery of the area and then combined to create a single raster mosaic. This process converted the images from a disparate set of photographs into a spatially explicit GIS data set that can be used to observe changes in land patches over time—and ultimately integrated with other long-term social, economic, and ecological data.more » « less
An official website of the United States government

