In the Southern California desert, the Salton Sea is the cause of a local socioenvironmental crisis reflective of various environmental injustices. Today’s Salton Sea is fed primarily through agricultural water run-off and effluent discharge. Over 23% of the Latinx and Torres Martinez Desert Cahuilla Indian identifying residents live below the poverty line in the two zip codes north of the sea (US Census Bureau, 2021). Persistent droughts and inequitable policies have accelerated the sea’s evaporation, exacerbating environmental health problems such as poor air quality and respiratory illnesses like asthma (Farzan et al., 2019). Since 2010, nonprofit organizations such as Alianza Coachella Valley (hereafter referred to as Alianza) have been addressing these issues and campaigning for economic and environmental justice in the Eastern Coachella Valley (ECV). Prior to this work, no reliable and continuous source of water quality information was easily accessible to local communities. Most recently, Alianza championed a community science initiative with the goal of establishing ongoing environmental monitoring, research, and advocacy. Through this initiative, community members formed the Salton Sea Environmental Time Series (SSET) in 2021 with support from the American Geophysical Union’s (AGU’s) Thriving Earth Exchange program. This collaboration, along with a variety of other institutions, has fostered diversity, equity, and inclusion (DEI) within scientific academia for underrepresented ECV scholars and can serve as a blueprint for future initiatives.
more »
« less
Boons or boondoggles: An assessment of the Salton Sea water importation options
Several ways to address the looming ecological disaster that is the Salton Sea have been proposed — including water importation. Here we considered two options: importing ocean water from the Sea of Cortés and leasing water from agricultural users in the Imperial Valley. We estimated the monetary costs for importing Sea of Cortés water to the Salton Sea and compared that with the costs of transferring water from agricultural users to the Salton Sea. We found that leasing water from agriculture would be substantially cheaper than ocean water imports. Additionally, all the infrastructure for leasing water from growers exists, which means water transfers could begin immediately. That is important given the present and increasing environmental and human health damages that are occurring at the Salton Sea.
more »
« less
- Award ID(s):
- 1739977
- PAR ID:
- 10184586
- Date Published:
- Journal Name:
- California Agriculture
- Volume:
- 74
- Issue:
- 2
- ISSN:
- 0008-0845
- Page Range / eLocation ID:
- 73 to 79
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The condition of the Salton Sea, California's largest lake, has profound implications for people and wildlife both near and far. Colorado River irrigation water has supported agricultural productivity in the basin's Coachella and Imperial valleys since the Sea formed over 100 years ago, bringing billions of dollars per year to the region and helping to feed households across the United States. The runoff, which drains into the Sea, has historically maintained water levels and supported critical fish and migratory bird habitats. However, since 2018, a large portion of the water previously allocated for agriculture has been diverted to urban regions, causing the Sea to shrink and become increasingly saline. This poses major threats to the Sea's ecology, as well as risks to human health, most notably in the noxious dust produced by the drying lakebed. To ensure continued agricultural and ecological productivity and protect public health, management of the Sea and surrounding wetlands will require increased research and mitigation efforts.more » « less
-
Abstract The fragile balance of endorheic lakes in highly managed semiarid basins with transboundary water issues has been altered by the intertwined effects of global warming and long‐term water mismanagement to support agricultural and industrial demand. The alarming rate of global endorheic lakes' depletion in recent decades necessitates formulating mitigation strategies for ecosystem restoration. However, detecting and quantifying the relative contribution of causal factors (climate variability and anthropogenic stressors) is challenging. This study developed a diagnostic multivariate framework to identify major hydrologic drivers of lake depletion in a highly managed endorheic basin with a complex water distribution system. The framework integrates the Soil and Water Assessment Tool (SWAT) simulations with time series decomposition and clustering methods to identify the major drivers of change. This diagnostic framework was applied to the Salton Sea Transboundary Basin (SSTB), the host of the world's most impaired inland lake. The results showed signs of depletion across the SSTB since late 1998 with no significant changes in climate conditions. The time series data mining of the SSTB water balance components indicated that decreases in lake tributary inflows (−16.4 Mm3yr−2) in response to decline in Colorado River inflows, associated with state water transfer agreements, are causing the Salton Sea to shrink, not changes in the irrigation operation as commonly believed. The developed multivariate detection and attribution framework is useful for identifying major drivers of change in coupled natural human systems.more » « less
-
Abstract BackgroundMicroorganisms are the biotic foundation for nutrient cycling across ecosystems, and their assembly is often based on the nutrient availability of their environment. Though previous research has explored the seasonal lake turnover and geochemical cycling within the Salton Sea, California’s largest lake, the microbial community of this declining ecosystem has been largely overlooked. We collected seawater from a single location within the Salton Sea at 0 m, 3 m, 4 m, 5 m, 7 m, 9 m, 10 m, and 10.5 m depths in August 2021, December 2021, and April 2022. ResultsWe observed that the water column microbiome significantly varied by season (R2 = 0.59,P = 0.003). Temperature (R2 = 0.27,P = 0.004), dissolved organic matter (R2 = 0.13,P = 0.004), and dissolved oxygen (R2 = 0.089,P = 0.004) were significant drivers of seasonal changes in microbial composition. In addition, several halophilic mixotrophs and other extremotolerant bacteria were consistently identified in samples across depths and time points, though their relative abundances fluctuated by season. We found that while sulfur cycling genes were present in all metagenomes, their relative coverages fluctuated by pathway and season throughout the water column. Sulfur oxidation and incomplete sulfur oxidation pathways were conserved in the microbiome across seasons. ConclusionsOur work demonstrates that the microbiome within the Salton Seawater has the capacity to metabolize sulfur species and utilize multiple trophic strategies, such as alternating between chemorganotrophy and chemolithoautrophy, to survive this harsh, fluctuating environment. Together, these results suggest that the Salton Sea microbiome is integral in the geochemical cycling of this ever-changing ecosystem and thus contributes to the seasonal dynamics of the Salton Sea. Further work is required to understand how these environmental bacteria are implicated relationship between the Salton Sea’s sulfur cycle, dust proliferation, and respiratory distress experienced by the local population.more » « less
-
Since the exhaustion of unallocated IP addresses at the Internet Assigned Numbers Authority (IANA), a market for IPv4 addresses has emerged. In complement to purchasing address space, leasing IP addresses is becoming increasingly popular. Leasing provides a cost-effective alternative for organizations that seek to scale up without a high upfront investment. However, malicious actors also benefit from leasing as it enables them to rapidly cycle through different addresses, circumventing security measures such as IP blocklisting. We explore the emerging IP leasing market and its implications for Internet security. We examine leasing market data, leveraging blocklists as an indirect measure of involvement in various forms of network abuse. In February 2025, leased prefixes were 2.89× more likely to be flagged by blocklists compared to non-leased prefixes. This result raises questions about whether the IP leasing market should be subject to closer scrutiny.more » « less
An official website of the United States government

