skip to main content


Title: Compression stiffening of fibrous networks with stiff inclusions

Tissues commonly consist of cells embedded within a fibrous biopolymer network. Whereas cell-free reconstituted biopolymer networks typically soften under applied uniaxial compression, various tissues, including liver, brain, and fat, have been observed to instead stiffen when compressed. The mechanism for this compression-stiffening effect is not yet clear. Here, we demonstrate that when a material composed of stiff inclusions embedded in a fibrous network is compressed, heterogeneous rearrangement of the inclusions can induce tension within the interstitial network, leading to a macroscopic crossover from an initial bending-dominated softening regime to a stretching-dominated stiffening regime, which occurs before and independently of jamming of the inclusions. Using a coarse-grained particle-network model, we first establish a phase diagram for compression-driven, stretching-dominated stress propagation and jamming in uniaxially compressed two- and three-dimensional systems. Then, we demonstrate that a more detailed computational model of stiff inclusions in a subisostatic semiflexible fiber network exhibits quantitative agreement with the predictions of our coarse-grained model as well as qualitative agreement with experiments.

 
more » « less
Award ID(s):
1826623 2019745
NSF-PAR ID:
10184684
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
117
Issue:
35
ISSN:
0027-8424
Page Range / eLocation ID:
p. 21037-21044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Both animal and plant tissue exhibit a nonlinear rheological phenomenon known as compression stiffening, or an increase in moduli with increasing uniaxial compressive strain. Does such a phenomenon exist in single cells, which are the building blocks of tissues? One expects an individual cell to compression soften since the semiflexible biopolymer-based cytoskeletal network maintains the mechanical integrity of the cell and in vitro semiflexible biopolymer networks typically compression soften. To the contrary, we find that mouse embryonic fibroblasts (mEFs) compression stiffen under uniaxial compression via atomic force microscopy studies. To understand this finding, we uncover several potential mechanisms for compression stiffening. First, we study a single semiflexible polymer loop modeling the actomyosin cortex enclosing a viscous medium modeled as an incompressible fluid. Second, we study a two-dimensional semiflexible polymer/fiber network interspersed with area-conserving loops, which are a proxy for vesicles and fluid-based organelles. Third, we study two-dimensional fiber networks with angular-constraining crosslinks, i.e. semiflexible loops on the mesh scale. In the latter two cases, the loops act as geometric constraints on the fiber network to help stiffen it via increased angular interactions. We find that the single semiflexible polymer loop model agrees well with the experimental cell compression stiffening finding until approximately 35% compressive strain after which bulk fiber network effects may contribute. We also find for the fiber network with area-conserving loops model that the stress–strain curves are sensitive to the packing fraction and size distribution of the area-conserving loops, thereby creating a mechanical fingerprint across different cell types. Finally, we make comparisons between this model and experiments on fibrin networks interlaced with beads as well as discuss implications for single cell compression stiffening at the tissue scale. 
    more » « less
  2. While cells within tissues generate and sense 3D states of strain, the current understanding of the mechanics of fibrous extracellular matrices (ECMs) stems mainly from uniaxial, biaxial, and shear tests. Here, we demonstrate that the multiaxial deformations of fiber networks in 3D cannot be inferred solely based on these tests. The interdependence of the three principal strains gives rise to anomalous ratios of biaxial to uniaxial stiffness between 8 and 9 and apparent Poisson’s ratios larger than 1. These observations are explained using a microstructural network model and a coarse-grained constitutive framework that predicts the network Poisson effect and stress–strain responses in uniaxial, biaxial, and triaxial modes of deformation as a function of the microstructural properties of the network, including fiber mechanics and pore size of the network. Using this theoretical approach, we found that accounting for the Poisson effect leads to a 100-fold increase in the perceived elastic stiffness of thin collagen samples in extension tests, reconciling the seemingly disparate measurements of the stiffness of collagen networks using different methods. We applied our framework to study the formation of fiber tracts induced by cellular forces. In vitro experiments with low-density networks showed that the anomalous Poisson effect facilitates higher densification of fibrous tracts, associated with the invasion of cancerous acinar cells. The approach developed here can be used to model the evolving mechanics of ECM during cancer invasion and fibrosis.

     
    more » « less
  3. Fiber-based materials are prevalent around us. While microscopically these systems resemble a discrete assembly of randomly interconnected fibers, the network architecture varies from one system to another. To identify the role of the network architecture, we study here cellular and fibrous random networks in tension and compression, and in the context of large strain elasticity. We observe that, compared to cellular networks of same global parameter set, fibrous networks exhibit in tension reduced strain stiffening, reduced fiber alignment, and reduced Poisson’s contraction in uniaxial tension. These effects are due to the larger number of kinematic constraints in the form of cross-links per fiber in the fibrous case. The dependence of the small strain modulus on network density is cubic in the fibrous case and quadratic in the cellular case. This difference persists when the number of cross-links per fiber in the fibrous case is rendered equal to that of the cellular case, which indicates that the different scaling is due to the higher structural disorder of the fibrous networks. The behavior of the two network types in compression is similar, although softening induced by fiber buckling and strain localization is less pronounced in the fibrous case. The contribution of transient interfiber contacts is weak in tension and important in compression 
    more » « less
  4. Tunable mechanics and fracture resistance are hallmarks of biological tissues whose properties arise from extracellular matrices comprised of double networks. To elucidate the origin of these desired properties, we study the shear modulus and fracture properties of a rigidly percolating double network model comprised of a primary network of stiff fibers and a secondary network of flexible fibers. We find that when the primary network density is just above its rigidity percolation threshold, the secondary network density can be tuned to facilitate stress relaxation via non-affine deformations and provide mechanical reinforcement. In contrast, when the primary network is far above its rigidity threshold, the double network is always stiff and brittle. These results highlight an important mechanism behind the tunability and resilience of biopolymer double networks: the secondary network can dramatically alter mechanical properties from compliant and ductile to stiff and brittle only when the primary network is marginally rigid. 
    more » « less
  5. The extracellular matrix provides macroscale structural support to tissues as well as microscale mechanical cues, like stiffness, to the resident cells. As those cues modulate gene expression, proliferation, differentiation, and motility, quantifying the stiffness that cells sense is crucial to understanding cell behavior. Whereas the macroscopic modulus of a collagen network can be measured in uniform extension or shear, quantifying the local stiffness sensed by a cell remains a challenge due to the inhomogeneous and nonlinear nature of the fiber network at the scale of the cell. To address this challenge, we designed an experimental method to measure the modulus of a network of collagen fibers at this scale. We used spherical particles of an active hydrogel (poly N-isopropylacrylamide) that contract when heated, thereby applying local forces to the collagen matrix and mimicking the contractile forces of a cell. After measuring the particles’ bulk modulus and contraction in networks of collagen fibers, we applied a nonlinear model for fibrous materials to compute the modulus of the local region surrounding each particle. We found the modulus at this length scale to be highly heterogeneous, with modulus varying by a factor of 3. In addition, at different values of applied strain, we observed both strain stiffening and strain softening, indicating nonlinearity of the collagen network. Thus, this experimental method quantifies local mechanical properties in a fibrous network at the scale of a cell, while also accounting for inherent nonlinearity. 
    more » « less