Double-network gels are a class of tough soft materials comprising two elastic networks with contrasting structures. The formation of a large internal damage zone ahead of the crack tip by the rupturing of the brittle network accounts for the large crack resistance of the materials. Understanding what determines the damage zone is the central question of the fracture mechanics of double-network gels. In this work, we found that at the onset of crack propagation, the size of necking zone, in which the brittle network breaks into fragments and the stretchable network is highly stretched, distinctly decreases with the increase of the solvent viscosity, resulting in a reduction in the fracture toughness of the material. This is in sharp contrast to the tensile behavior of the material that does not change with the solvent viscosity. This result suggests that the dynamics of stretchable network strands, triggered by the rupture of the brittle network, plays a role. To account for this solvent viscosity effect on the crack initiation, a delayed blunting mechanism regarding the polymer dynamics effect is proposed. The discovery on the role of the polymer dynamic adds an important missing piece to the fracture mechanism of this unique material.
more »
« less
Rigidity and fracture of biopolymer double networks
Tunable mechanics and fracture resistance are hallmarks of biological tissues whose properties arise from extracellular matrices comprised of double networks. To elucidate the origin of these desired properties, we study the shear modulus and fracture properties of a rigidly percolating double network model comprised of a primary network of stiff fibers and a secondary network of flexible fibers. We find that when the primary network density is just above its rigidity percolation threshold, the secondary network density can be tuned to facilitate stress relaxation via non-affine deformations and provide mechanical reinforcement. In contrast, when the primary network is far above its rigidity threshold, the double network is always stiff and brittle. These results highlight an important mechanism behind the tunability and resilience of biopolymer double networks: the secondary network can dramatically alter mechanical properties from compliant and ductile to stiff and brittle only when the primary network is marginally rigid.
more »
« less
- PAR ID:
- 10353853
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 18
- Issue:
- 2
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 322 to 327
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The incorporation of a secondary network into traditional single‐network hydrogels can enhance mechanical properties, such as toughness and loading to failure. These features are important for many applications, including as biomedical materials; however, the processing of interpenetrating polymer network (IPN) hydrogels is often limited by their multistep fabrication procedures. Here, a one‐pot scheme for the synthesis of biopolymer IPN hydrogels mediated by the simultaneous crosslinking of two independent networks with light, namely: i) free‐radical crosslinking of methacrylate‐modified hyaluronic acid (HA) to form the primary network and ii) thiol–ene crosslinking of norbornene‐modified HA with thiolated guest–host assemblies of adamantane and β‐cyclodextrin to form the secondary network, is reported. The mechanical properties of the IPN hydrogels are tuned by changing the network composition, with high water content (≈94%) hydrogels exhibiting excellent work of fracture, tensile strength, and low hysteresis. As proof‐of‐concept, the IPN hydrogels are implemented as low‐viscosity Digital Light Processing resins to fabricate complex structures that recover shape upon loading, as well as in microfluidic devices to form deformable microparticles. Further, the IPNs are cytocompatible with cell adhesion dependent on the inclusion of adhesive peptides. Overall, the enhanced processing of these IPN hydrogels will expand their utility across applications.more » « less
-
The double‐network (DN) concept, initially applied to hydrogels, has been adapted to elastomers, resulting in materials that combine exceptional toughness with tunable elasticity. This article delves into the constitutive and fracture behaviors of DN elastomers, elucidating the pivotal role of prestretch and composition in tailoring their properties. An incompressible hyperelastic model is employed to predict the stress–strain behavior and energy release rate of a DN elastomer, focusing on how the interactions between the two networks influence its overall material properties. The influence of prestretch and composition on increasing the stiffness and energy release rate of a DN elastomer is analytically determined. The analytical predictions are validated experimentally through comprehensive mechanical and fracture testing using a DN elastomer fabricated by a two‐step crosslinking process to decouple the prestretch and composition. The results show that manipulating these processing parameters can finely tune the mechanical responses of DN elastomers, optimizing them for specific applications. The findings provide new insights into the mechanics of DN elastomers.more » « less
-
Abstract Water swollen polymer networks are attractive for applications ranging from tissue regeneration to water purification. For water purification, charged polymers provide excellent ion separation properties. However, many ion exchange membranes (IEMs) are brittle, necessitating the use of thick support materials that ultimately decrease throughput. To this end, novel double network hydrogels (DNHs) with variable water content are prepared and characterized in terms of mechanical and ion transport properties to evaluate their potential utility as tough membrane materials. The first network contains fixed anionic charges, while the other is comprised of a copolymer with varied ratios of hydrophobic ethyl acrylate (EA) and hydrophilic dimethyl acrylamide (DMA) repeat units. Characterization of freestanding DNH films reveals a reduction in water content from 88 to 53 wt% and a simultaneous increase in ultimate stress and strain by ~3.5× and ~4.5×, respectively, for 95%/5% EA/DMA, relative to 100% DMA. Fundamental salt transport properties relevant to water purification, including permeability, solubility, and diffusivity, are measured and systematically compared with conventional membrane materials to inform the development of DNHs for membrane applications. The ability to simultaneously reduce water content and increase mechanical integrity highlights the potential of DNHs as a synthetic platform for future membrane applications.more » « less
-
Abstract Understanding mechanistic causes of non‐Fickian transport in fractured media is important for many hydrogeologic processes and subsurface applications. This study elucidates the effects of dead‐end fractures on non‐Fickian transport in three‐dimensional (3D) fracture networks. Although dead‐end fractures have been identified as low‐velocity regions that could delay solute transport, the direct relation between dead‐end fractures and non‐Fickian transport has been elusive. We systematically generate a large number of 3D discrete fracture networks with different fracture length distributions and fracture densities. We then identify dead‐end fractures using a novel graph‐based method. The effect of dead‐end fractures on solute residence time maximizes at the critical fracture density of the percolation threshold, leading to strong late‐time tailing. As fracture density increases beyond the percolation threshold, the network connectivity increases, and dead‐end fractures diminish. Consequently, the increase in network connectivity leads to a reduction in the degree of late‐time tailing. We also show that dead‐end fractures can inform about main transport paths, such as the mean tortuosity of particle trajectories. This study advances our mechanistic understanding of solute transport in 3D fracture networks.more » « less
An official website of the United States government

