skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phase transitions in nematics: textures with tactoids and disclinations
We demonstrate that a first order isotropic-to-nematic phase transition in liquid crystals can be succesfully modeled within the generalized Landau-de Gennes theory by selecting an appropriate combination of elastic constants. The numerical simulations of the model established in this paper qualitatively reproduce the experimentally observed configurations that include interfaces and topological defects in the nematic phase.  more » « less
Award ID(s):
1729509
PAR ID:
10184868
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Mathematical Modelling of Natural Phenomena
Volume:
15
ISSN:
0973-5348
Page Range / eLocation ID:
8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We have structurally characterized the liquid crystal (LC) phase that can appear as an intermediate state when a dielectric nematic, having polar disorder of its molecular dipoles, transitions to the almost perfectly polar-ordered ferroelectric nematic. This intermediate phase, which fills a 100-y-old void in the taxonomy of smectic LCs and which we term the “smectic Z A ,” is antiferroelectric, with the nematic director and polarization oriented parallel to smectic layer planes, and the polarization alternating in sign from layer to layer with a 180 Å period. A Landau free energy, originally derived from the Ising model of ferromagnetic ordering of spins in the presence of dipole–dipole interactions, and applied to model incommensurate antiferroelectricity in crystals, describes the key features of the nematic–SmZ A –ferroelectric nematic phase sequence. 
    more » « less
  2. The success of nematic liquid crystals in displays and optical applications is due to the combination of their optical uniaxiality, fluidity, elasticity, responsiveness to electric fields and controllable coupling of the molecular orientation at the interface with solid surfaces. The discovery of a polar nematic phase opens new possibilities for liquid crystal-based applications, but also requires a new study of how this phase couples with surfaces. Here we explore the surface alignment of the ferroelectric nematic phase by testing different rubbed and unrubbed substrates that differ in coupling strength and anchoring orientation and find a variety of behaviors – in terms of nematic orientation, topological defects and electric field response – that are specific to the ferroelectric nematic phase and can be understood as a consequence of the polar symmetry breaking. In particular, we show that by using rubbed polymer surfaces it is easy to produce cells with a planar polar preferential alignment and that cell electrostatics ( e.g. grounding the electrodes) has a remarkable effect on the overall homogeneity of the ferroelectric ordering. 
    more » « less
  3. We report the observation of the smectic A F , a liquid crystal phase of the ferroelectric nematic realm. The smectic A F is a phase of small polar, rod-shaped molecules that form two-dimensional fluid layers spaced by approximately the mean molecular length. The phase is uniaxial, with the molecular director, the local average long-axis orientation, normal to the layer planes, and ferroelectric, with a spontaneous electric polarization parallel to the director. Polarization measurements indicate almost complete polar ordering of the ∼10 Debye longitudinal molecular dipoles, and hysteretic polarization reversal with a coercive field ∼2 × 10 5 V / m is observed. The SmA F phase appears upon cooling in two binary mixtures of partially fluorinated mesogens: 2N/DIO, exhibiting a nematic (N)–smectic Z A (SmZ A )–ferroelectric nematic (N F )–SmA F phase sequence, and 7N/DIO, exhibiting an N–SmZ A –SmA F phase sequence. The latter presents an opportunity to study a transition between two smectic phases having orthogonal systems of layers. 
    more » « less
  4. We report the experimental determination of the structure and response to applied electric field of the lower-temperature nematic phase of the previously reported calamitic compound 4-[(4-nitrophenoxy)carbonyl]phenyl2,4-dimethoxybenzoate (RM734). We exploit its electro-optics to visualize the appearance, in the absence of applied field, of a permanent electric polarization density, manifested as a spontaneously broken symmetry in distinct domains of opposite polar orientation. Polarization reversal is mediated by field-induced domain wall movement, making this phase ferroelectric, a 3D uniaxial nematic having a spontaneous, reorientable polarization locally parallel to the director. This polarization density saturates at a low temperature value of ∼6 µC/cm 2 , the largest ever measured for a fluid or glassy material. This polarization is comparable to that of solid state ferroelectrics and is close to the average value obtained by assuming perfect, polar alignment of molecular dipoles in the nematic. We find a host of spectacular optical and hydrodynamic effects driven by ultralow applied field (E ∼ 1 V/cm), produced by the coupling of the large polarization to nematic birefringence and flow. Electrostatic self-interaction of the polarization charge renders the transition from the nematic phase mean field-like and weakly first order and controls the director field structure of the ferroelectric phase. Atomistic molecular dynamics simulation reveals short-range polar molecular interactions that favor ferroelectric ordering, including a tendency for head-to-tail association into polar, chain-like assemblies having polar lateral correlations. These results indicate a significant potential for transformative, new nematic physics, chemistry, and applications based on the enhanced understanding, development, and exploitation of molecular electrostatic interaction. 
    more » « less
  5. Most of the current highly polar rod-shaped molecules that form ferroelectric nematic (NF) phase do so only at elevated temperatures and multicomponent mixtures are generally needed to obtain a broad and room temperature range NF phase. In this work, we describe the synthesis, phase characterization and measurement of various physical properties of a new ferroelectric nematic compound 4-[(4-nitrophenoxy)carbonyl]phenyl 2-isopropoxy-4-methoxybenzoate (RT11165). The molecular structure of RT11165 with a 2-isopropoxy group differs only by a substitution of the 2-methoxy group found in the prototype ferroelectric nematic material 4-[(4-nitrophenoxy)carbonyl]phenyl 2,4-dimethoxybenzoate (RM734). This small structure change produces a rather dramatic change in phase behavior leading to an NF phase from 63 °C down to room temperature. Below about 45°C the rotational viscosity of RT11165 increases critically and the temperature dependence indicates a glass transition at ~19°C. The transparent and polar glassy state of RT11165, which should be also piezoelectric, is a good candidate for energy storage, piezoecatalysis, data storage and other applications. 
    more » « less