skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surface alignment of ferroelectric nematic liquid crystals
The success of nematic liquid crystals in displays and optical applications is due to the combination of their optical uniaxiality, fluidity, elasticity, responsiveness to electric fields and controllable coupling of the molecular orientation at the interface with solid surfaces. The discovery of a polar nematic phase opens new possibilities for liquid crystal-based applications, but also requires a new study of how this phase couples with surfaces. Here we explore the surface alignment of the ferroelectric nematic phase by testing different rubbed and unrubbed substrates that differ in coupling strength and anchoring orientation and find a variety of behaviors – in terms of nematic orientation, topological defects and electric field response – that are specific to the ferroelectric nematic phase and can be understood as a consequence of the polar symmetry breaking. In particular, we show that by using rubbed polymer surfaces it is easy to produce cells with a planar polar preferential alignment and that cell electrostatics ( e.g. grounding the electrodes) has a remarkable effect on the overall homogeneity of the ferroelectric ordering.  more » « less
Award ID(s):
1710711 2005170
PAR ID:
10312368
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
17
Issue:
35
ISSN:
1744-683X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the experimental determination of the structure and response to applied electric field of the lower-temperature nematic phase of the previously reported calamitic compound 4-[(4-nitrophenoxy)carbonyl]phenyl2,4-dimethoxybenzoate (RM734). We exploit its electro-optics to visualize the appearance, in the absence of applied field, of a permanent electric polarization density, manifested as a spontaneously broken symmetry in distinct domains of opposite polar orientation. Polarization reversal is mediated by field-induced domain wall movement, making this phase ferroelectric, a 3D uniaxial nematic having a spontaneous, reorientable polarization locally parallel to the director. This polarization density saturates at a low temperature value of ∼6 µC/cm 2 , the largest ever measured for a fluid or glassy material. This polarization is comparable to that of solid state ferroelectrics and is close to the average value obtained by assuming perfect, polar alignment of molecular dipoles in the nematic. We find a host of spectacular optical and hydrodynamic effects driven by ultralow applied field (E ∼ 1 V/cm), produced by the coupling of the large polarization to nematic birefringence and flow. Electrostatic self-interaction of the polarization charge renders the transition from the nematic phase mean field-like and weakly first order and controls the director field structure of the ferroelectric phase. Atomistic molecular dynamics simulation reveals short-range polar molecular interactions that favor ferroelectric ordering, including a tendency for head-to-tail association into polar, chain-like assemblies having polar lateral correlations. These results indicate a significant potential for transformative, new nematic physics, chemistry, and applications based on the enhanced understanding, development, and exploitation of molecular electrostatic interaction. 
    more » « less
  2. Abstract The first demonstration of converse piezoelectricity in 3D fluids is presented by measuring a linear electromechanical effect in ferroelectric nematic liquid crystals. The observed piezoelectric coupling constant below 6 kHz electric field is larger than 1 nC/N, comparable to, or better than, values for the strongest solid piezoelectric materials. Symmetry considerations indicate that the alignment of the ferroelectric nematic liquid crystal in the experimental study is not optimized, so the observed signal is likely only a fraction of the theoretically achievable signal. Understanding the electromechanical response of ferroelectric nematics will enable mechanical energy harvesting and open up a new avenue for developing fluid actuators, micro positioners, and electrically tunable optical lenses. 
    more » « less
  3. We report the observation of the smectic A F , a liquid crystal phase of the ferroelectric nematic realm. The smectic A F is a phase of small polar, rod-shaped molecules that form two-dimensional fluid layers spaced by approximately the mean molecular length. The phase is uniaxial, with the molecular director, the local average long-axis orientation, normal to the layer planes, and ferroelectric, with a spontaneous electric polarization parallel to the director. Polarization measurements indicate almost complete polar ordering of the ∼10 Debye longitudinal molecular dipoles, and hysteretic polarization reversal with a coercive field ∼2 × 10 5 V / m is observed. The SmA F phase appears upon cooling in two binary mixtures of partially fluorinated mesogens: 2N/DIO, exhibiting a nematic (N)–smectic Z A (SmZ A )–ferroelectric nematic (N F )–SmA F phase sequence, and 7N/DIO, exhibiting an N–SmZ A –SmA F phase sequence. The latter presents an opportunity to study a transition between two smectic phases having orthogonal systems of layers. 
    more » « less
  4. We show that surface interactions can vectorially structure the three-dimensional polarization field of a ferroelectric fluid. The contact between a ferroelectric nematic liquid crystal and a surface with in-plane polarity generates a preferred in-plane orientation of the polarization field at that interface. This is a route to the formation of fluid or glassy monodomains of high polarization without the need for electric field poling. For example, unidirectional buffing of polyimide films on planar surfaces to give quadrupolar in-plane anisotropy also induces macroscopic in-plane polar order at the surfaces, enabling the formation of a variety of azimuthal polar director structures in the cell interior, including uniform and twisted states. In a π-twist cell, obtained with antiparallel, unidirectional buffing on opposing surfaces, we demonstrate three distinct modes of ferroelectric nematic electro-optic response: intrinsic, viscosity-limited, field-induced molecular reorientation; field-induced motion of domain walls separating twisted states of opposite chirality; and propagation of polarization reorientation solitons from the cell plates to the cell center upon field reversal. Chirally doped ferroelectric nematics in antiparallel-rubbed cells produce Grandjean textures of helical twist that can be unwound via field-induced polar surface reorientation transitions. Fields required are in the 3-V/mm range, indicating an in-plane polar anchoring energy of w P ∼3 × 10 −3 J/m 2 . 
    more » « less
  5. Khoo, Iam Choon (Ed.)
    Nematic liquid crystals exhibit nanosecond electro-optic response to an applied electric field which modifies the degree of orientational order without realigning the molecular orientation. However, this nanosecond electrically-modified order parameter (NEMOP) effect requires high driving fields, on the order of 108 V/m for a modest birefringence change of 0.01. In this work, we demonstrate that a nematic phase of the recently discovered ferroelectric nematic materials exhibits a robust and fast electro-optic response. Namely, a relatively weak field of 2×107 V/m changes the birefringence by ≈ 0.04 with field-on and -off times around 1 μs. This microsecond electrically modified order parameter (MEMOP) effect shows a greatly improved figure of merit when compared to other electro-optical switching modes in liquid crystals, including the conventional Frederiks effect, and has a potential for applications in fast electro-optical devices such as phase modulators, optical shutters, displays, and beam steerers. 
    more » « less