skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Suppressing alkali-silica reaction through incorporation of calcined kaolinite–montmorillonite clay blends
Cement substitution with calcined kaolinite–montmorillonite clay blends as an effective way to suppress alkali-silica reaction in cement composites containing reactive aggregates is investigated. Expansion, cracking behavior, mechanical properties and microstructure of the cement composites were investigated. Hydration of the ternary cement blends was also characterized. The results indicate that cement modification with a combination of calcined kaolinite–montmorillonite clays can effectively mitigate alkali-silica reaction-induced deteriorations. By incorporating 30% clays, the volume expansion of the cement composites was decreased from deleterious to innocuous level. Amount of cracks was decreased with increasing clay incorporations. In the presence of combined calcined clays, the strength gain of the cement composites is more significant the strength loss caused by alkali-silica reaction indicating the effective mitigation of this virulent reaction in concrete.  more » « less
Award ID(s):
1935799
PAR ID:
10184915
Author(s) / Creator(s):
Date Published:
Journal Name:
15th International Congress on the Chemistry of Cement
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The RILEM technical committee 282-CCL: Calcined Clays as Supplementary Cementitious Materials, investigates all the aspects related to calcined clays, from clay exploration and characterization to calcination process, hydration reactions and concrete properties. This white paper focuses on the hydration mechanisms of calcined clay-blended Portland cements, covering both 1:1 and 2:1 calcined clays. The pozzolanic reaction of calcined clay is detailed, and the main reaction products are described. The differences observed depending on the clay type are also discussed, as well as the potential influence of the secondary phases present in calcined clay. The factors controlling and limiting the reaction of calcined clay are investigated, evidencing the role of porosity saturation and refinement of the microstructure. The complete characterisation of the hydration of calcined clay cements is made possible by the determination of the reaction degree of calcined clay. Several methods are compared to estimate the extent of calcined clay reaction. The influence of clinker and limestone mineralogy are also discussed. Finally, guidelines for optimising the mixture design of calcined clay blended cements are provided, with special attention to sulphate adjustment and clinker factor. 
    more » « less
  2. Abstract The use of calcined clays as supplementary cementitious materials provides the opportunity to significantly reduce the cement industry’s carbon burden; however, use at a global scale requires a deep understanding of the extraction and processing of the clays to be used, which will uncover routes to optimise their reactivity. This will enable increased usage of calcined clays as cement replacements, further improving the sustainability of concretes produced with them. Existing technologies can be adopted to produce calcined clays at an industrial scale in many regions around the world. This paper, produced by RILEM TC 282-CCL on calcined clays as supplementary cementitious materials (working group 2), focuses on the production of calcined clays, presents an overview of clay mining, and assesses the current state of the art in clay calcination technology, covering the most relevant aspects from the clay deposit to the factory gate. The energetics and associated carbon footprint of the calcination process are also discussed, and an outlook on clay calcination is presented, discussing the technological advancements required to fulfil future global demand for this material in sustainable infrastructure development. 
    more » « less
  3. This paper studies the alkali-silica reaction (ASR) in rapid-strength belitic calcium sulfoaluminate (BCSA) cement systems. Theoretically, its low alkalinity and high alumina content should make BCSA less prone to ASR than portland cement (PC), but little experimental evidence has been published, and the theorized mechanisms have not been examined critically. We examine this problem using expansion tests, microstructural analysis, and pore solution analysis. Accelerated expansion tests show increased expansion in BCSA mortars with reactive aggregates, but we argue that the test conditions are unsuitable for the cement. Long-term expansion tests show a significant reduction in expansion in BCSA mortars with reactive aggregates, but later-age measurements still exceed ASTM C1778 limits and microstructural investigations indicate ASR damage. Curiously, BCSA mortars with nonreactive aggregates also expanded significantly, but no ASR damage was observed. BCSA pore solutions had ten times more aluminum than PC and one-tenth as much calcium. While the pH was sufficiently high to initiate ASR, the alkali reserves can be half or less than in PC. Overall, BCSA cement is not immune to ASR, but it is more resistant than PC. This is mostly related to the lower alkalinity of the cement and, to a lesser degree, to the abundance of alumina and shortage of soluble calcium. 
    more » « less
  4. Abstract Microcrystalline zeolites of the gismondine family are often reported in alkali‐activated and blended cement systems. However, little is known about gismondine's compatibility with other cementitious phases to determine stability in long‐term phase assemblage. Experimental studies were conducted to investigate the compositional field of gismondine stability in the lime‐alumina‐silica‐hydrate systems, with a particular focus on understanding the compatibility of gismondine with other cement phases such as C‐S‐H, ettringite, monosulfate, strätlingite, katoite, gypsum, calcite, portlandite, alkali, silica, and aluminosilicate phases. Results show that gismondine‐Ca forms readily at ~85°C in high aluminosilicate compositions; and persists in the presence of calcite, gypsum, ettringite, katoite solid solution, low Ca tobermorite‐like C‐S‐H, silica and aluminosilicate phases, at 20‐85°C. However, gismondine‐Ca reacts with: (a) monosulfate, producing ettringite‐thaumasite solid solution; (b) portlandite, forming tobermorite‐like C‐A‐S‐H gel and siliceous katoite at >55°C; (c) aqueous NaOH, generating gismondine‐(Na,Ca), a garronite‐like zeolite P solid solution; and (d) strätlingite leading to the conversion of strätlingite to gismondine indicating the metastability of strätlingite with respect to gismondine at 55°C. The outcomes are discussed to provide insights into the long‐term phase assemblage of relevant cement systems such as lime‐calcined clay, alkali‐activated materials, and potentially ancient Roman concrete. 
    more » « less
  5. A novel internal conditioning (InCon) technique based on saturated sodium montmorillonite (sMT) functionalized with two non-ionic surfactants, polyoxyethylene (9) nonylphenylether and t-octyl phenoxy poly ethoxyethanol, is investigated in this study. With the integration of water for internal curing and pozzolanic reactivity in a single system, the role of InCon in modifying cement hydration kinetics is comprehensively elucidated. The results indicate that, in the presence of InCon, both silicate reaction and secondary aluminate reaction rates are enhanced, and the apparent activation energy (Ea) of cement hydration was decreased from 34.3 KJ/mol to 28.7 KJ/mol indicating a lower temperature sensitivity and threshold of the cement hydration reactions. In addition, decreased CH contents, improved degree of hydration, increased chemical shrinkage, and the formation of additional Csingle bondSsingle bondH and aluminum-containing phases were obtained from the cement with InCon. The autogenous shrinkage of cement and the negative impact of dry sMT on the early age strength of cement can be offset by InCon paving a new path to improve the overall properties of concrete. 
    more » « less