skip to main content


Title: Orientation of coastal-zone Langmuir cells forced by wind, wave and mean current at variable obliquity
Langmuir circulation, a key turbulent process in the upper ocean, is mechanistically driven and sustained by imposed atmospheric wind stress and surface wave drift. In addition, and specifically in coastal zones, the presence of a mean current – whether associated with tidal currents or large-scale eddies – generates bottom-boundary-layer shear, which further modulates the physical attributes of coastal-zone Langmuir turbulence. We show that the presence of bottom-boundary-layer shear generated by oblique forcing between the mean current, atmospheric drag, and monochromatic wave field direction changes the orientation of the resultant, large-scale Langmuir cells. A model to predict this resultant orientation, based on salient parameters defining the forcing obliquity, is proposed. We also perform a systematic parametric study to isolate the ‘turning’ influence of salient parameters, which reveals that the resultant Langmuir cell orientation is always intermediate to the imposed forces. In order to provide a rigorous basis for the results, we study terms responsible for sustenance of streamwise vorticity, and provide a theoretical justification for the observed results.  more » « less
Award ID(s):
1756902
NSF-PAR ID:
10184932
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
879
ISSN:
0022-1120
Page Range / eLocation ID:
716 to 743
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In shallow coastal oceans, turbulent flows driven by surface winds and waves and constrained by a solid bottom disperse particles. This work examines the mechanisms driving horizontal and vertical dispersion of buoyant and sinking particles for times much greater than turbulent integral time scales. Turbulent fields are modeled using a wind‐stress driven large eddy simulation (LES), incorporating wave‐driven Langmuir turbulence, surface breaking wave turbulent kinetic energy inputs, and a solid bottom boundary. A Lagrangian stochastic model is paired to the LES to incorporate Lagrangian particle tracking. Within a subset of intermediate buoyant rise velocities, particles experience synergistic vertical mixing in which breaking waves (BW) inject particles into Langmuir downwelling velocities sufficient to drive deep mixing. Along‐wind dispersion is controlled by vertical shear in mean along‐wind velocities. Wind and bottom friction‐driven vertical shear enhances dispersion of buoyant and sinking particles, while energetic turbulent mixing, such as from BW, dampens shear dispersion. Strongly rising and sinking particles trapped at the ocean surface and bottom, respectively, experience no vertical shear, resulting in low rates of along‐wind dispersion. Crosswind dispersion is shaped by particle advection in wind‐aligned fields of counter‐rotating Langmuir and Couette roll cells. Langmuir cells enhance crosswind dispersion in neutrally to intermediately buoyant particles through enhanced cell hopping. Surface trapping restricts particles to Langmuir convergence regions, strongly inhibiting crosswind dispersion. In shallow coastal systems, particle dispersion depends heavily on particle buoyancy and wave‐dependent turbulent effects.

     
    more » « less
  2. Abstract

    This work evaluates the fidelity of various upper-ocean turbulence parameterizations subject to realistic monsoon forcing and presents a finite-time ensemble vector (EV) method to better manage the design and numerical principles of these parameterizations. The EV method emphasizes the dynamics of a turbulence closure multimodel ensemble and is applied to evaluate 10 different ocean surface boundary layer (OSBL) parameterizations within a single-column (SC) model against two boundary layer large-eddy simulations (LES). Both LES include realistic surface forcing, but one includes wind-driven shear turbulence only, while the other includes additional Stokes forcing through the wave-average equations that generate Langmuir turbulence. The finite-time EV framework focuses on what constitutes the local behavior of the mixed layer dynamical system and isolates the forcing and ocean state conditions where turbulence parameterizations most disagree. Identifying disagreement provides the potential to evaluate SC models comparatively against the LES. Observations collected during the 2018 monsoon onset in the Bay of Bengal provide a case study to evaluate models under realistic and variable forcing conditions. The case study results highlight two regimes where models disagree 1) during wind-driven deepening of the mixed layer and 2) under strong diurnal forcing.

     
    more » « less
  3. Abstract

    This study examines the utility of Eady-type theories as applied to understanding baroclinic instability in coastal flows where depth variations and bottom drag are important. The focus is on the effects of nongeostrophy, boundary dissipation, and bottom slope. The approach compares theoretically derived instability properties against numerical model calculations, for experiments designed to isolate the individual effects and justified to have Eady-like basic states. For the nongeostrophic effect, the theory of Stone (1966) is shown to give reasonable predictions for the most unstable growth rate and wavelength. It is also shown that the growing instability in a fully nonlinear model can be interpreted as boundary-trapped Rossby wave interactions—that is, wave phase locking and westward phase tilt allow waves to be mutually amplified. The analyses demonstrate that both the boundary dissipative and bottom slope effects can be represented by vertical velocities at the lower boundary of the unstable interior, via inducing Ekman pumping and slope-parallel flow, respectively, as proposed by the theories of Williams and Robinson (1974; referred to as the Eady–Ekman problem) and Blumsack and Gierasch (1972). The vertical velocities, characterized by a friction parameter and a slope ratio, modify the bottom wave and thus the scale selection. However, the theories have inherent quantitative limitations. Eady–Ekman neglects boundary layer responses that limit the increase of bottom stress, thereby overestimating the Ekman pumping and growth rate reduction at large drag. Blumsack and Gierasch’s (1972) model ignores slope-induced horizontal shear in the mean flow that tilts the eddies to favor converting energy back to the mean, thus having limited utility over steep slopes.

     
    more » « less
  4. null (Ed.)
    Abstract This study investigates the dynamics of velocity shear and Reynolds stress in the ocean surface boundary layer for idealized misaligned wind and wave fields using a large-eddy simulation (LES) model based on the Craik–Leibovich equations, which captures Langmuir turbulence (LT). To focus on the role of LT, the LES experiments omit the Coriolis force, which obscures a stress–current-relation analysis. Furthermore, a vertically uniform body force is imposed so that the volume-averaged Eulerian flow does not accelerate but is steady. All simulations are first spun-up without wind-wave misalignment to reach a fully developed stationary turbulent state. Then, a crosswind Stokes drift profile is abruptly imposed, which drives crosswind stresses and associated crosswind currents without generating volume-averaged crosswind currents. The flow evolves to a new stationary state, in which the crosswind Reynolds stress vanishes while the crosswind Eulerian shear and Stokes drift shear are still present, yielding a misalignment between Reynolds stress and Lagrangian shear (sum of Eulerian current and Stokes drift). A Reynolds stress budgets analysis reveals a balance between stress production and velocity–pressure gradient terms (VPG) that encloses crosswind Eulerian shear, demonstrating a complex relation between shear and stress. In addition, the misalignment between Reynolds stress and Eulerian shear generates a horizontal turbulent momentum flux (due to correlations of along-wind and crosswind turbulent velocities) that can be important in producing Reynolds stress (due to correlations of horizontal and vertical turbulent velocities). Thus, details of the Reynolds stress production by Eulerian and Stokes drift shear may be critical for driving upper-ocean currents and for accurate turbulence parameterizations in misaligned wind-wave conditions. 
    more » « less
  5. Abstract

    Various forms of regime diagrams have become an accepted means of identifying the dominant type of forcing of turbulence in the ocean surface layer. However, all of the proposed forms share a number of issues, demonstrated here, that make them an imperfect tool for this purpose. Instead, I suggest a forcing space consisting of surface buoyancy flux (usually dominated by surface heat flux) and a growth rate defined as the inverse of a theoretical time scale for growth of Langmuir circulations in an unstratified water column. Using coastal data, it is demonstrated that, provided forcing conditions are roughly constant for several hours, location in the upper half-plane of this forcing space predicts organizational characteristics of observed turbulence that range in a systematic way between those of “pure” convection and those of full depth Langmuir circulations. In this upper half-plane, where a convective scale velocity exists and the surface Stokes drift velocity can be computed, allowing calculation of a Stokes scale velocity, a linear combination of the two scale velocities provides a consistent estimate of observed rms turbulent vertical velocity. Time dependence is nevertheless a frequent characteristic of ocean surface layer forcing, if only because of the (usually large) diurnal variation in surface heat flux. It is shown that the time scale of response of surface layer turbulence to time variable forcing depends on whether the major change is due to wind/wave or buoyancy forcing. Relevant modeling studies are suggested.

     
    more » « less