Aging infrastructure and growing interests in river restoration have led to a substantial rise in dam removals in the United States. However, the decision to remove a dam involves many complex trade-offs. The benefits of dam removal for hazard reduction and ecological restoration are potentially offset by the loss of hydroelectricity production, water supply, and other important services. We use a multiobjective approach to examine a wide array of trade-offs and synergies involved with strategic dam removal at three spatial scales in New England. We find that increasing the scale of decision-making improves the efficiency of trade-offs among ecosystem services, river safety, and economic costs resulting from dam removal, but this may lead to heterogeneous and less equitable local-scale outcomes. Our model may help facilitate multilateral funding, policy, and stakeholder agreements by analyzing the trade-offs of coordinated dam decisions, including net benefit alternatives to dam removal, at scales that satisfy these agreements.
more »
« less
Coordinated river infrastructure decisions improve net social-ecological benefits
We explore the social, ecological, economic, and technical dimensions of sustainable river infrastructure development and the potential benefits of coordinating decisions such as dam removal and stream crossing improvement. Dam removal is common practice for restoring river habitat connectivity and ecosystem health. However, stream crossings such as culverts are often 15 times more abundant than dams and may pose similar ecological impacts. Using multi-objective optimization for a model system of 6,100 dams and culverts in Maine, USA, we demonstrate substantial benefit-cost improvements provided by coordinating habitat connectivity decisions. Benefit-cost efficiency improves by two orders of magnitude when coordinating more decisions across wider areas, but this approach may cause inequitable resource distribution. Culvert upgrades improve roadway safety and habitat connectivity, creating cost-effective opportunities for coordinating and cost-sharing projects between conservationists and safety managers. Benefit-cost trends indicate significant overlaps in habitat and safety goals, encouraging flexible stakeholder collaborations and cost-sharing strategies.
more »
« less
- Award ID(s):
- 1539071
- PAR ID:
- 10184986
- Date Published:
- Journal Name:
- Environmental Research Letters
- ISSN:
- 1748-9326
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Despite growing interest in conservation and re‐establishment of ecological connectivity, few studies have explored its context‐specific social–ecological outcomes. We aimed to explore social and ecological outcomes to changing stream connectivity for both stakeholders and native fish species impacted by habitat fragmentation and nonnative species. We (1) investigated stakeholder perceptions of the drivers and outcomes of stream connectivity, and (2) evaluated the effects of stakeholder‐identified connectivity and nonnative species scenarios on Yellowstone cutthroat trout (YCT) populations. Our study was conducted in the Teton River, Idaho, USA. We integrated two modeling approaches, mental modeling and individual‐based ecological modeling, to explore social–ecological outcomes for stakeholders and YCT populations. Aggregation of mental models revealed an emergent pattern of increasing complexity as more types of stakeholders were considered, as well as gaps and linkages among different stakeholder knowledge areas. These results highlight the importance of knowledge sharing among stakeholders when making decisions about connectivity. Additionally, the results from the individual‐based models suggested that the potential for a large, migratory life history form of YCT, in addition to self‐preference mating where they overlap with rainbow trout, had the strongest effects on outcomes for YCT. Exploring social and ecological drivers and outcomes to changing connectivity is useful for anticipating and adapting to unintended outcomes, as well as making decisions for desirable outcomes. The results from this study can contribute to the management dialogue surrounding stream connectivity in the Teton River, as well as to our understanding of connectivity conservation and its outcomes more broadly.more » « less
-
Barriers such as hydroelectric dams inhibit migratory pathways essential to many aquatic species, resulting in significant losses of species, their unique life-history forms, and genetic diversity. Understanding the impacts of dam removal to species recovery at these different biological levels is crucial to fully understand the restoration response. We used the removal of two large dams on the Elwha River as an opportunity to characterize how restored connectivity impacts the reestablishment of two fish species, Chinook salmon (Oncorhynchus tshawytscha) and Steelhead/rainbow trout (Oncorhynchus mykiss), and their unique ocean migration return-timing life-history forms. In this study, we employed riverscape genetics to understand how restoration and the environment influence the distribution of neutral and return-timing genetic variation underlying the migratory life-history forms and species at- and between- sampling sites. We genotyped fish sampled over time and space in the Elwha River using Genotyping-in-Thousands by sequencing (GTseq) loci for both species at neutral and putatively adaptive loci in and near the major effect genic regionGREB1L/ROCK1putatively associated with migration timing. We observed little evidence of genetic structure for either species, but a statistically significant increase in early return-timing alleles in upriverO. mykisspopulation post-dam removal. ForO. tshawytscha, at-site genetic variation was shaped by river distance and a combination of environmental habitat differences, while between-site genetic variation was mainly shaped by river distance. For allO. mykiss, at- and between-site genetic variation is primarily explained by river distance. Genetic variation in juvenile and adult Steelhead, respectively, were influenced by at- and between-site environmental and habitat differences. Our study illustrates the power of using genetics to understand the implications of both demography and environment in facilitating the recovery of species and their diverse life-history forms following barrier removal.more » « less
-
Abstract Dams and other anthropogenic barriers have caused global ecological and hydrological upheaval in the blink of the geological eye. In the present article, we synthesize 307 studies in a systematic review of contemporary evolution following reduced connectivity and habitat alteration on freshwater fishes. Genetic diversity loss was more commonly observed for small populations impounded in small habitat patches for many generations behind low-passability barriers. Studies show that impoundments can cause rapid adaptive evolution in migration timing, behavior, life history, temperature tolerance, and morphology, as well as reduce phenotypic variance, which can alter adaptive potential and ecological roles. Fish passage structures can restore migratory populations but also create artificial selection pressures on body size and migration. The accelerating pace of dam removals and the paucity of data for fishes other than salmonids, other vertebrates, invertebrates, and tropical and southern hemisphere organisms highlights the urgent need for more studies on the rapid evolutionary effects of dams.more » « less
-
This article considers the agentic capacity of fish in dam removal decisions. Pairing new materialist explorations of agency with news media, policy documents, and interviews related to a suite of dam decisions in a New England, USA watershed, we identify the ways that river herring seem constrained through technocratic discourse to particular human-defined roles in dam removal discussions. We suggest, meanwhile, that existing human relationships with salmonids like brook trout might serve as a bridge for public stakeholders and restoration managers to recognise the agentic creativity of fish in dam removal and river restoration decisions.more » « less
An official website of the United States government

