Abstract MetPy is an open-source, Python-based package for meteorology, providing domain-specific functionality built extensively on top of the robust scientific Python software stack, which includes libraries like NumPy, SciPy, Matplotlib, and xarray. The goal of the project is to bring the weather analysis capabilities of GEMPAK (and similar software tools) into a modern computing paradigm. MetPy strives to employ best practices in its development, including software tests, continuous integration, and automated publishing of web-based documentation. As such, MetPy represents a sustainable, long-term project that fills a need for the meteorological community. MetPy’s development is substantially driven by its user community, both through feedback on a variety of open, public forums like Stack Overflow, and through code contributions facilitated by the GitHub collaborative software development platform. MetPy has recently seen the release of version 1.0, with robust functionality for analyzing and visualizing meteorological datasets. While previous versions of MetPy have already seen extensive use, the 1.0 release represents a significant milestone in terms of completeness and a commitment to long-term support for the programming interfaces. This article provides an overview of MetPy’s suite of capabilities, including its use of labeled arrays and physical unit information as its core data model, unit-awaremore »
The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package
The goal of the SunPy project is to facilitate and promote the use and development of community-led, free, and open source data analysis software for solar physics based on the scientific Python environment. The project achieves this goal by developing and maintaining the sunpy core package and supporting an ecosystem of affiliated packages. This paper describes the first official stable release (version 1.0) of the core package, as well as the project organization and infrastructure. This paper concludes with a discussion of the future of the SunPy project.
- Authors:
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Award ID(s):
- 1715122
- Publication Date:
- NSF-PAR ID:
- 10184991
- Journal Name:
- The Astrophysical journal
- Volume:
- 890
- Issue:
- 1
- ISSN:
- 2471-4259
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper describes the development of a facilitator training program that prepares volunteers to offer interactive workshops to build professional skills. This effort to “train the trainers” is part of the CyberAmbassadors workforce development project funded by the National Science Foundation (NSF). The overarching goal of the CyberAmbassadors project is to develop professional skills training that helps participants collaborate more effectively in interdisciplinary settings. The core curriculum for participants includes 20+ hours of materials and activities to build communications, teamwork, and leadership skills. The “train the trainers” project described here is a complementary effort to prepare STEM professionals to facilitate these CyberAmbassadors professional skills trainings for their own workplaces and communities. The facilitator training program was developed and tested with two cohorts, totaling more than 50 participants. Over the course of two days of in-person training, new facilitators had opportunities to experience the core curriculum as participants; to practice facilitation skills and lead group activities; to discuss practical and logistical aspects of offering training in their own communities; and to become familiar with the underlying pedagogy, learning goals, and modular structure of the professional skills curriculum. Surveys were used to collect feedback and evaluate participants’ satisfaction with the CyberAmbassadors professionalmore »
-
The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a coordinated, multiexpedition International Ocean Discovery Program (IODP) drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. The fundamental scientific objectives of the NanTroSEIZE drilling project include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. IODP Expedition 365 is part of NanTroSEIZE Stage 3, with the following primary objectives: (1) retrieval of a temporary observatory at Site C0010 that has been monitoring temperature and pore pressure within the major splay thrust fault (termed the “megasplay”) at 400 meters below seafloor since November 2010 and (2) deployment of a complex long-term borehole monitoring system (LTBMS) that will be connected to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) seafloor cabled observatory network postexpedition (anticipated June 2016). The LTBMS incorporates multilevel pore pressure sensing, a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. Together with an existing observatory at Integrated Ocean Drilling Program Site C0002 and a possible future installation near themore »
-
The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a coordinated, multiexpedition International Ocean Discovery Program (IODP) drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. The fundamental scientific objectives of the NanTroSEIZE drilling project include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. IODP Expedition 365 is part of NanTroSEIZE Stage 3, with the following primary objectives: 1. Retrieval of a temporary observatory at Site C0010 that began monitoring temperature and pore pressure within the major splay thrust fault (termed the “megasplay”) at 400 meters below seafloor in November 2010. 2. Deployment of a complex long-term borehole monitoring system (LTBMS) designed to be connected to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) seafloor cabled observatory network postexpedition. The LTBMS incorporates multilevel pore pressure sensing, a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. Together with an existing observatory at Integrated Ocean Drilling Program Site C0002 and a planned future installation near the trench, the Site C0010 observatorymore »
-
Teaching Engineering Concepts to Harness Future Innovators and Technologists (TECHFIT) was an NSF-funded science, technology, engineering, and math (STEM) project (DRL-1312215) (Harriger B. , Harriger, Flynn, & Flynn, 2013) that included a professional development (PD) program for teachers and an afterschool program for students. Curriculum and Assessment Design to Study the Development of Motivation and Computational Thinking for Middle School Students across Three Learning Contexts is an NSF-funded research project (DRL-1640178) (Harriger A. , Harriger, Parker, & Li, 2016) that examines the impact of delivering the TECHFIT curriculum to middle school students in three different contexts: afterschool program, in-school class, core class module. Thus far, the new project has deployed TECHFIT using the first two contexts, both of which use the entire TECHFIT curriculum. The goal of the TECHFIT curriculum is to spark interest in STEM and computational thinking (CT) in middle school students. The curriculum employs two computer programming tools as well as physical computing to introduce participants to STEM and CT. It also includes use of brain blasts to engage participants in a wide variety of physical activity throughout the instruction as well as to enrich their imaginations with different ways to make movement fun. This paper focusesmore »