skip to main content


Title: The SunPy Project: Open Source Development and Status of the Version 1.0 Core Package
The goal of the SunPy project is to facilitate and promote the use and development of community-led, free, and open source data analysis software for solar physics based on the scientific Python environment. The project achieves this goal by developing and maintaining the sunpy core package and supporting an ecosystem of affiliated packages. This paper describes the first official stable release (version 1.0) of the core package, as well as the project organization and infrastructure. This paper concludes with a discussion of the future of the SunPy project.  more » « less
Award ID(s):
1715122
NSF-PAR ID:
10184991
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical journal
Volume:
890
Issue:
1
ISSN:
2471-4259
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MetPy is an open-source, Python-based package for meteorology, providing domain-specific functionality built extensively on top of the robust scientific Python software stack, which includes libraries like NumPy, SciPy, Matplotlib, and xarray. The goal of the project is to bring the weather analysis capabilities of GEMPAK (and similar software tools) into a modern computing paradigm. MetPy strives to employ best practices in its development, including software tests, continuous integration, and automated publishing of web-based documentation. As such, MetPy represents a sustainable, long-term project that fills a need for the meteorological community. MetPy’s development is substantially driven by its user community, both through feedback on a variety of open, public forums like Stack Overflow, and through code contributions facilitated by the GitHub collaborative software development platform. MetPy has recently seen the release of version 1.0, with robust functionality for analyzing and visualizing meteorological datasets. While previous versions of MetPy have already seen extensive use, the 1.0 release represents a significant milestone in terms of completeness and a commitment to long-term support for the programming interfaces. This article provides an overview of MetPy’s suite of capabilities, including its use of labeled arrays and physical unit information as its core data model, unit-aware calculations, cross sections, skew T and GEMPAK-like plotting, station model plots, and support for parsing a variety of meteorological data formats. The general road map for future planned development for MetPy is also discussed. 
    more » « less
  2. The NASA-NSF sponsored Space Weather with Quantified Uncertainty (SWQU) project's main objective is to develop a data-driven, time-dependent, open source model of the solar corona and heliosphere. One key component of the SWQU effort is using a data-assimilation flux transport model to generate an ensemble of synchronic radial magnetic field maps as boundary conditions for the coronal field model. To accomplish this goal, we are developing a new Open-source Flux Transport (OFT) software suite. While there are a number of established flux transport models in the community, OFT is distinguished from many of these efforts in 3 key attributes: (1) It is based on modern computing techniques that will allow many realizations to be rapidly computed on multi-core systems and/or GPUs, (2) it is designed to be easily extensible, and (3) OFT will be released as an open source project. OFT consists of three software packages: 1) OFTpy: a python package for data acquisition, database organization, and Carrington map processing, 2) ConFlow: a Fortran code that generates super granular convective flows, and 3) High-Performance Flux Transport (HipFT): a modular, GPU-accelerated Fortran code for modeling surface flux transport with data assimilation. Here, we present the current state of the OFT project, key features and methods of OFTpy, ConFlow, and HipFt, and real-world examples of data-assimilation and flux transport with HipFT. Validation and performance tests are shown, including generating an ensemble of OFT maps. 
    more » « less
  3. This paper describes the development of a facilitator training program that prepares volunteers to offer interactive workshops to build professional skills. This effort to “train the trainers” is part of the CyberAmbassadors workforce development project funded by the National Science Foundation (NSF). The overarching goal of the CyberAmbassadors project is to develop professional skills training that helps participants collaborate more effectively in interdisciplinary settings. The core curriculum for participants includes 20+ hours of materials and activities to build communications, teamwork, and leadership skills. The “train the trainers” project described here is a complementary effort to prepare STEM professionals to facilitate these CyberAmbassadors professional skills trainings for their own workplaces and communities. The facilitator training program was developed and tested with two cohorts, totaling more than 50 participants. Over the course of two days of in-person training, new facilitators had opportunities to experience the core curriculum as participants; to practice facilitation skills and lead group activities; to discuss practical and logistical aspects of offering training in their own communities; and to become familiar with the underlying pedagogy, learning goals, and modular structure of the professional skills curriculum. Surveys were used to collect feedback and evaluate participants’ satisfaction with the CyberAmbassadors professional skills curriculum; their self-assessment of facilitation and professional skills before and after the training; and feedback on the facilitator training experience. Responses from the first cohort of participants were used to refine the facilitator training program and it was offered to a second group of volunteers six months later. In the intervening time, several facilitators from the first cohort implemented CyberAmbassadors trainings at academic institutions, professional conferences, and industry workplaces. Participant surveys were used to provide feedback to the volunteer facilitators and to assist the project coordinators in identifying areas where additional training or support might be helpful. These lessons were used to improve the facilitator training program for the second cohort, and we recruited some of the original volunteers to help lead the second “train the trainers” experience. This approach both provides newer facilitators with additional experience and expands the number of individuals who can “train the trainers” and help to propagate the program for future participants. In addition to describing the experiences and results from this “train the trainers” effort, this paper details the information, planning tools, and supports that are incorporated throughout the CyberAmbassadors professional skills curriculum materials to assist facilitators in offering these trainings. Lessons learned from this project can be adapted to other professional education efforts, both in terms of preparing new instructors and in helping trained facilitators better understand and meet the needs of their audience. 
    more » « less
  4. In this paper, we report on the impacts of the ProQual Institute—a $1M award via the NSF ECREHR Core Research program in 2019—as it nears the end of its funding period. The ProQual Institute’s goal is to build national capacity for STEM education research by engaging technical STEM from across the U.S. in cohorts that participate in an 8-week course on qualitative and mixed methods educational research techniques, followed by engagement in several communities of practice to continue supporting participant research projects and building participants’ confidence as educational researchers. This project was funded based on impact rather than knowledge generation; thus, this paper will report on the impacts of the ProQual Institute in terms of participants served and evaluated outcomes and project team observations. The key evaluation questions we answered were: (1) To what extent did the project design and implement a high-quality and culturally responsive training program? (2) What knowledge and skills did participants gain because of participation in the ProQual Institute? (3) How could the ProQual Institute be built upon to improve participant outcomes? 
    more » « less
  5. null (Ed.)
    The Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a coordinated, multiexpedition International Ocean Discovery Program (IODP) drilling project designed to investigate fault mechanics and seismogenesis along subduction megathrusts through direct sampling, in situ measurements, and long-term monitoring in conjunction with allied laboratory and numerical modeling studies. The fundamental scientific objectives of the NanTroSEIZE drilling project include characterizing the nature of fault slip and strain accumulation, fault and wall rock composition, fault architecture, and state variables throughout the active plate boundary system. IODP Expedition 365 is part of NanTroSEIZE Stage 3, with the following primary objectives: (1) retrieval of a temporary observatory at Site C0010 that has been monitoring temperature and pore pressure within the major splay thrust fault (termed the “megasplay”) at 400 meters below seafloor since November 2010 and (2) deployment of a complex long-term borehole monitoring system (LTBMS) that will be connected to the Dense Oceanfloor Network System for Earthquakes and Tsunamis (DONET) seafloor cabled observatory network postexpedition (anticipated June 2016). The LTBMS incorporates multilevel pore pressure sensing, a volumetric strainmeter, tiltmeter, geophone, broadband seismometer, accelerometer, and thermistor string. Together with an existing observatory at Integrated Ocean Drilling Program Site C0002 and a possible future installation near the trench, the Site C0010 observatory will allow monitoring within and above regions of contrasting behavior of the megasplay fault and the plate boundary as a whole. These include a site above the updip edge of the locked zone (Site C0002), a shallow site in the megasplay fault zone and its footwall (Site C0010), and a site at the tip of the accretionary prism (Integrated Ocean Drilling Program Site C0006). Together, this suite of observatories has the potential to capture deformation spanning a wide range of timescales (e.g., seismic and microseismic activity, slow slip, and interseismic strain accumulation) across a transect from near-trench to the seismogenic zone. Site C0010 is located 3.5 km along strike to the southwest of Integrated Ocean Drilling Program Site C0004. The site was drilled and cased during Integrated Ocean Drilling Program Expedition 319, with casing screens spanning a ~20 m interval that includes the megasplay fault, and suspended with a temporary instrument package (a “SmartPlug”). During Integrated Ocean Drilling Program Expedition 332 in late 2010, the instrument package was replaced with an upgraded sensor package (the “GeniusPlug”), which included pressure and temperature sensors and a set of geochemical and biological experiments. Expedition 365 achieved its primary scientific and operational objectives, including recovery of the GeniusPlug with a >5 y record of pressure and temperature conditions within the shallow megasplay fault zone, geochemical samples, and its in situ microbial colonization experiment; and installation of the LTBMS. The pressure records from the GeniusPlug include high-quality records of formation and seafloor responses to multiple fault slip events, including the 11 March 2011 Tohoku M9 and 1 April 2016 Mie-ken Nanto-oki M6 earthquakes. The geochemical sampling coils yielded in situ pore fluids from the splay fault zone, and microbes were successfully cultivated from the colonization unit. The complex sensor array, in combination with the multilevel hole completion, is one of the most ambitious and sophisticated observatory installations in scientific ocean drilling (similar to that in Hole C0002G, deployed in 2010). Overall, the installation went smoothly, efficiently, and ahead of schedule. The extra time afforded by the efficient observatory deployment was used for coring in Holes C0010B–C0010E. Despite challenging hole conditions, the depth interval corresponding to the screened casing across the megasplay fault was successfully sampled in Hole C0010C, and the footwall of the megasplay was sampled in Hole C0010E, with >50% recovery for both zones. In the hanging wall of the megasplay fault (Holes C0010C and C0010D), we recovered indurated silty clay with occasional ash layers and sedimentary breccias. Some of the deposits show burrows and zones of diagenetic alteration/colored patches. Mudstones show different degrees of deformation spanning from occasional fractures to intervals of densely fractured scaly claystones of up to >10 cm thickness. Sparse faulting with low displacement (usually <2 cm) is seen in core and exhibits primarily normal and, rarely, reversed sense of slip. When present, ash was entrained along fractures and faults. On one occasion, a ~10 cm thick ash layer was found, which showed a fining-downward gradation into a mottled zone with clasts of the underlying silty claystones. In Hole C0010E, the footwall to the megasplay fault was recovered. Sediments are horizontally to gently dipping and mainly comprise silt of olive-gray color. The deposits of the underthrust sediment prism are less indurated than the hanging wall mudstones and show lamination on a centimeter scale. The material is less intensely deformed than the mudstones, and apart from occasional fracturation (some of it being drilling disturbance), evidence of structural features is absent. 
    more » « less