skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Generative Design of Multi-Material Hierarchical Structures via Concurrent Topology Optimization and Conformal Geometry Method
Abstract

Topology optimization has been proved to be an automatic, efficient and powerful tool for structural designs. In recent years, the focus of structural topology optimization has evolved from mono-scale, single material structural designs to hierarchical multimaterial structural designs. In this research, the multi-material structural design is carried out in a concurrent parametric level set framework so that the structural topologies in the macroscale and the corresponding material properties in mesoscale can be optimized simultaneously. The constructed cardinal basis function (CBF) is utilized to parameterize the level set function. With CBF, the upper and lower bounds of the design variables can be identified explicitly, compared with the trial and error approach when the radial basis function (RBF) is used. In the macroscale, the ‘color’ level set is employed to model the multiple material phases, where different materials are represented using combined level set functions like mixing colors from primary colors. At the end of this optimization, the optimal material properties for different constructing materials will be identified. By using those optimal values as targets, a second structural topology optimization is carried out to determine the exact mesoscale metamaterial structural layout. In both the macroscale and the mesoscale structural topology optimization, an energy functional is utilized to regularize the level set function to be a distance-regularized level set function, where the level set function is maintained as a signed distance function along the design boundary and kept flat elsewhere. The signed distance slopes can ensure a steady and accurate material property interpolation from the level set model to the physical model. The flat surfaces can make it easier for the level set function to penetrate its zero level to create new holes. After obtaining both the macroscale structural layouts and the mesoscale metamaterial layouts, the hierarchical multimaterial structure is finalized via a local-shape-preserving conformal mapping to preserve the designed material properties. Unlike the conventional conformal mapping using the Ricci flow method where only four control points are utilized, in this research, a multi-control-point conformal mapping is utilized to be more flexible and adaptive in handling complex geometries. The conformally mapped multi-material hierarchical structure models can be directly used for additive manufacturing, concluding the entire process of designing, mapping, and manufacturing.

 
more » « less
Award ID(s):
1762287
PAR ID:
10185257
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASME IDETC/CIE 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Topology optimization has been proved to be an efficient tool for structural design. In recent years, the focus of structural topology optimization has been shifting from single material continuum structures to multimaterial and multiscale structures. This paper aims at devising a numerical scheme for designing bionic structures by combining a two-stage parametric level set topology optimization with the conformal mapping method. At the first stage, the macro-structural topology and the effective material properties are optimized simultaneously. At the second stage, another structural topology optimization is carried out to identify the exact layout of the metamaterial at the mesoscale. The achieved structure and metamaterial designs are further synthesized to form a multiscale structure using conformal mapping, which mimics the bionic structures with “orderly chaos” features. In this research, a multi-control-point conformal mapping (MCM) based on Ricci flow is proposed. Compared with conventional conformal mapping with only four control points, the proposed MCM scheme can provide more flexibility and adaptivity in handling complex geometries. To make the effective mechanical properties of the metamaterials invariant after conformal mapping, a variable-thickness structure method is proposed. Three 2D numerical examples using MCM schemes are presented, and their results and performances are compared. The achieved multimaterial multiscale structure models are characterized by the “orderly chaos” features of bionic structures while possessing the desired performance. 
    more » « less
  2. Synchronous reluctance motors (SynRMs) have gained considerable attention in the field of electric vehicles as they reduce the need for permanent magnets in the rotor, resulting in less material and manufacturing costs. However, their lower average torque and torque ripple vibrations have been identified as key issues that require resolution. In this study, we present a SynRM design framework employing the cardinal basis functions (CBF)-based parametric level set method. The SynRms design problem is recast as a variational problem constrained by Maxwell's equations which describe the behavior of electric and magnetic fields in the SynRM. A continuum shape sensitivity analysis is carried out using the material derivative and adjoint method. A distance regularization energy function is employed to maintain the level set function as a signed distance function during the optimization. The parametric topology optimization problem is computationally solved using the Method of Moving Asymptotes (MMA). To demonstrate the effectiveness of our approach, we present a numerical example that compares the torque characteristics of the optimal design with those of a reference design. Preliminary results show that the optimized SynRM has a 30.30% increase in average torque, along with a slight increase in torque ripple, compared to the reference model. 
    more » « less
  3. In this paper, we propose a new method to approach the problem of structural shape and topology optimization on manifold (or free-form surfaces). A manifold is conformally mapped onto a 2D rectangle domain, where the level set functions are defined. With conformal mapping, the corresponding covariant derivatives on a manifold can be represented by the Euclidean differential operators multiplied by a scalar. Therefore, the topology optimization problem on a free-form surface can be formulated as a 2D problem in the Euclidean space. To evolve the boundaries on a free-form surface, we propose a modified Hamilton-Jacobi equation and solve it on a 2D plane following the conformal geometry theory. In this way, we can fully utilize the conventional level-set-based computational framework. Compared with other established approaches which need to project the Euclidean differential operators to the manifold, the computational difficulty of our method is highly reduced while all the advantages of conventional level set methods are well preserved. We hope the proposed computational framework can provide a timely solution to increasing applications involving innovative structural designs on free-form surfaces in different engineering fields. 
    more » « less
  4. null (Ed.)
    Soft active materials can generate flexible locomotion and change configurations through large deformations when subjected to an external environmental stimulus. They can be engineered to design 'soft machines' such as soft robots, compliant actuators, flexible electronics, or bionic medical devices. By embedding ferromagnetic particles into soft elastomer matrix, the ferromagnetic soft matter can generate flexible movement and shift morphology in response to the external magnetic field. By taking advantage of this physical property, soft active structures undergoing desired motions can be generated by tailoring the layouts of the ferromagnetic soft elastomers. Structural topology optimization has emerged as an attractive tool to achieve innovative structures by optimizing the material layout within a design domain, and it can be utilized to architect ferromagnetic soft active structures. In this paper, the level-set-based topology optimization method is employed to design ferromagnetic soft robots (FerroSoRo). The objective function comprises a sub-objective function for the kinematics requirement and a sub-objective function for minimum compliance. Shape sensitivity analysis is derived using the material time derivative and adjoint variable method. Three examples, including a gripper, an actuator, and a flytrap structure, are studied to demonstrate the effectiveness of the proposed framework. 
    more » « less
  5. Summary

    This study focuses on the topology optimization framework for the design of multimaterial dissipative systems at finite strains. The overall goal is to combine a soft viscoelastic material with a stiff hyperelastic material for realizing optimal structural designs with tailored damping and stiffness characteristics. To this end, several challenges associated with incorporating finite‐deformation viscoelastic‐hyperelastic materials in a multimaterial design framework are addressed. This includes consideration of a thermodynamically consistent finite‐strain viscoelasticity model for simulating energy dissipation together with F‐bar finite elements for handling material incompressibility. Moreover, an effective multimaterial interpolation scheme is proposed, which preserves the physics of material mixtures in the context of density‐based topology optimization. A numerically accurate analytical design sensitivity calculation is also presented using a path‐dependent adjoint method. Furthermore, both prescribed‐load and prescribed‐displacement boundary conditions are considered in the optimization formulations, together with various strategies for controlling stiffness. As demonstrated by the numerical examples, the use of the stiffer hyperelastic material phase in a design not only improves stiffness but also increases energy dissipation capacity. Moreover, with the finite‐deformation theory, the effect of the loading magnitude on the optimized designs can be observed.

     
    more » « less