skip to main content


Title: Automatic and Robust Skull Registration Based on Discrete Uniformization
Skull registration plays a fundamental role in forensic science and is crucial for craniofacial reconstruction. The complicated topology, lack of anatomical features, and low quality reconstructed mesh make skull registration challenging. In this work, we propose an automatic skull registration method based on the discrete uniformization theory, which can handle complicated topologies and is robust to low quality meshes. We apply dynamic Yamabe flow to realize discrete uniformization, which modifies the mesh combinatorial structure during the flow and conformally maps the multiply connected skull surface onto a planar disk with circular holes. The 3D surfaces can be registered by matching their planar images using harmonic maps. This method is rigorous with theoretic guarantee, automatic without user intervention, and robust to low mesh quality. Our experimental results demonstrate the efficiency and efficacy of the method.  more » « less
Award ID(s):
1762287 1737812
NSF-PAR ID:
10185293
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Computer Vision workshops
ISSN:
2473-9936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introduction Multi-series CT (MSCT) scans, including non-contrast CT (NCCT), CT Perfusion (CTP), and CT Angiography (CTA), are widely used in acute stroke imaging. While each scan has its advantage in disease diagnosis, the varying image resolution of different series hinders the ability of the radiologist to discern subtle suspicious findings. Besides, higher image quality requires high radiation doses, leading to increases in health risks such as cataract formation and cancer induction. Thus, it is highly crucial to develop an approach to improve MSCT resolution and to lower radiation exposure. Hypothesis MSCT imaging of the same patient is highly correlated in structural features, the transferring and integration of the shared and complementary information from different series are beneficial for achieving high image quality. Methods We propose TL-GAN, a learning-based method by using Transfer Learning (TL) and Generative Adversarial Network (GAN) to reconstruct high-quality diagnostic images. Our TL-GAN method is evaluated on 4,382 images collected from nine patients’ MSCT scans, including 415 NCCT slices, 3,696 CTP slices, and 271 CTA slices. We randomly split the nine patients into a training set (4 patients), a validation set (2 patients), and a testing set (3 patients). In preprocessing, we remove the background and skull and visualize in brain window. The low-resolution images (1/4 of the original spatial size) are simulated by bicubic down-sampling. For training without TL, we train different series individually, and for with TL, we follow the scanning sequence (NCCT, CTP, and CTA) by finetuning. Results The performance of TL-GAN is evaluated by the peak-signal-to-noise ratio (PSNR) and structural similarity (SSIM) index on 184 NCCT, 882 CTP, and 107 CTA test images. Figure 1 provides both visual (a-c) and quantity (d-f) comparisons. Through TL-GAN, there is a significant improvement with TL than without TL (training from scratch) for NCCT, CTP, and CTA images, respectively. These significances of performance improvement are evaluated by one-tailed paired t-tests (p < 0.05). We enlarge the regions of interest for detail visual comparisons. Further, we evaluate the CTP performance by calculating the perfusion maps, including cerebral blood flow (CBF) and cerebral blood volume (CBV). The visual comparison of the perfusion maps in Figure 2 demonstrate that TL-GAN is beneficial for achieving high diagnostic image quality, which are comparable to the ground truth images for both CBF and CBV maps. Conclusion Utilizing TL-GAN can effectively improve the image resolution for MSCT, provides radiologists more image details for suspicious findings, which is a practical solution for MSCT image quality enhancement. 
    more » « less
  2. null (Ed.)
    There is a growing importance in characterizing 3D shape quality in additive manufacturing (a.k.a. 3D printing). To accurately define the shape deviation between the designed product and actual build, shape registration of scanned point cloud data serves as a prerequisite for a reliable measurement. However, manual registration is currently heavily involved, for example, in obtaining initial matching of the design and the scanned product based on landmark features. The procedure can be inefficient, and more importantly, introduce potentially large operator-to-operator variations for complex geometries and deformation. Finding a sparse shape correspondence before refined registration would be meaningful to address this problem. In that case, automatic landmark selection has been a challenging issue, particularly for complicate geometric shapes like teeth. In this work we present an automatic landmark selection method for complicated 3D shapes. By incorporating subject matter knowledge (e.g., dental biometric information), a 3D shape will be first segmented through a new density-based clustering method. The geodesic distance is proposed as the distance metric in the revised clustering procedure. Geometrically informative features in each segment are automatically selected through the principal component analysis and Hotelling's T2 statistic. The proposed method is demonstrated in dental 3D printing application and could serve as a basis of sparse shape correspondence. 
    more » « less
  3. This paper describes a numerical method for surface parameterization, yielding maps that are locally injective and discretely conformal in an exact sense. Unlike previous methods for discrete conformal parameterization, the method is guaranteed to work for any manifold triangle mesh, with no restrictions on triangulatiothat each task can be formulated as a convex problem where the triangulation is allowed to change---we complete the picture by introducing the machinery needed to actually construct a discrete conformal map. In particular, we introduce a new scheme for tracking correspondence between triangulations based on normal coordinates , and a new interpolation procedure based on layout in the light cone. Stress tests involving difficult cone configurations and near-degenerate triangulations indicate that the method is extremely robust in practice, and provides high-quality interpolation even on meshes with poor elements. 
    more » « less
  4. Computation of injective (or inversion-free) maps is a key task in geometry processing, physical simulation, and shape optimization. Despite being a longstanding problem, it remains challenging due to its highly nonconvex and combinatoric nature. We propose computation ofvariational quasi-harmonic mapsto obtain smooth inversion-free maps. Our work is built on a key observation about inversion-free maps: A planar map is a diffeomorphism if and only if it is quasi-harmonic and satisfies a special Cauchy boundary condition. We hence equate the inversion-free mapping problem to an optimal control problem derived from our theoretical result, in which we search in the space of parameters that define an elliptic PDE. We show that this problem can be solved by minimizing within a family of functionals. Similarly, our discretized functionals admit exactly injective maps as the minimizers, empirically producing inversion-free discrete maps of triangle meshes. We design efficient numerical procedures for our problem that prioritize robust convergence paths. Experiments show that on challenging examples our methods can achieve up to orders of magnitude improvement over state-of-the-art, in terms of speed or quality. Moreover, we demonstrate how to optimize a generic energy in our framework while restricting to quasi-harmonic maps.

     
    more » « less
  5. Purpose

    We propose and evaluate a new structured low‐rank method for echo‐planar imaging (EPI) ghost correction called Robust Autocalibrated LORAKS (RAC‐LORAKS). The method can be used to suppress EPI ghosts arising from the differences between different readout gradient polarities and/or the differences between different shots. It does not require conventional EPI navigator signals, and is robust to imperfect autocalibration data.

    Methods

    Autocalibrated LORAKS is a previous structured low‐rank method for EPI ghost correction that uses GRAPPA‐type autocalibration data to enable high‐quality ghost correction. This method works well when the autocalibration data are pristine, but performance degrades substantially when the autocalibration information is imperfect. RAC‐LORAKS generalizes Autocalibrated LORAKS in two ways. First, it does not completely trust the information from autocalibration data, and instead considers the autocalibration and EPI data simultaneously when estimating low‐rank matrix structure. Second, it uses complementary information from the autocalibration data to improve EPI reconstruction in a multi‐contrast joint reconstruction framework. RAC‐LORAKS is evaluated using simulations and in vivo data, including comparisons to state‐of‐the‐art methods.

    Results

    RAC‐LORAKS is demonstrated to have good ghost elimination performance compared to state‐of‐the‐art methods in several complicated EPI acquisition scenarios (including gradient‐echo brain imaging, diffusion‐encoded brain imaging, and cardiac imaging).

    Conclusions

    RAC‐LORAKS provides effective suppression of EPI ghosts and is robust to imperfect autocalibration data.

     
    more » « less