skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Automatic and Robust Skull Registration Based on Discrete Uniformization
Skull registration plays a fundamental role in forensic science and is crucial for craniofacial reconstruction. The complicated topology, lack of anatomical features, and low quality reconstructed mesh make skull registration challenging. In this work, we propose an automatic skull registration method based on the discrete uniformization theory, which can handle complicated topologies and is robust to low quality meshes. We apply dynamic Yamabe flow to realize discrete uniformization, which modifies the mesh combinatorial structure during the flow and conformally maps the multiply connected skull surface onto a planar disk with circular holes. The 3D surfaces can be registered by matching their planar images using harmonic maps. This method is rigorous with theoretic guarantee, automatic without user intervention, and robust to low mesh quality. Our experimental results demonstrate the efficiency and efficacy of the method.  more » « less
Award ID(s):
1762287 1737812
PAR ID:
10185293
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Computer Vision workshops
ISSN:
2473-9936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes a numerical method for surface parameterization, yielding maps that are locally injective and discretely conformal in an exact sense. Unlike previous methods for discrete conformal parameterization, the method is guaranteed to work for any manifold triangle mesh, with no restrictions on triangulatiothat each task can be formulated as a convex problem where the triangulation is allowed to change---we complete the picture by introducing the machinery needed to actually construct a discrete conformal map. In particular, we introduce a new scheme for tracking correspondence between triangulations based onnormal coordinates, and a new interpolation procedure based on layout in thelight cone.Stress tests involving difficult cone configurations and near-degenerate triangulations indicate that the method is extremely robust in practice, and provides high-quality interpolation even on meshes with poor elements. 
    more » « less
  2. null (Ed.)
    There is a growing importance in characterizing 3D shape quality in additive manufacturing (a.k.a. 3D printing). To accurately define the shape deviation between the designed product and actual build, shape registration of scanned point cloud data serves as a prerequisite for a reliable measurement. However, manual registration is currently heavily involved, for example, in obtaining initial matching of the design and the scanned product based on landmark features. The procedure can be inefficient, and more importantly, introduce potentially large operator-to-operator variations for complex geometries and deformation. Finding a sparse shape correspondence before refined registration would be meaningful to address this problem. In that case, automatic landmark selection has been a challenging issue, particularly for complicate geometric shapes like teeth. In this work we present an automatic landmark selection method for complicated 3D shapes. By incorporating subject matter knowledge (e.g., dental biometric information), a 3D shape will be first segmented through a new density-based clustering method. The geodesic distance is proposed as the distance metric in the revised clustering procedure. Geometrically informative features in each segment are automatically selected through the principal component analysis and Hotelling's T2 statistic. The proposed method is demonstrated in dental 3D printing application and could serve as a basis of sparse shape correspondence. 
    more » « less
  3. Computation of injective (or inversion-free) maps is a key task in geometry processing, physical simulation, and shape optimization. Despite being a longstanding problem, it remains challenging due to its highly nonconvex and combinatoric nature. We propose computation ofvariational quasi-harmonic mapsto obtain smooth inversion-free maps. Our work is built on a key observation about inversion-free maps: A planar map is a diffeomorphism if and only if it is quasi-harmonic and satisfies a special Cauchy boundary condition. We hence equate the inversion-free mapping problem to an optimal control problem derived from our theoretical result, in which we search in the space of parameters that define an elliptic PDE. We show that this problem can be solved by minimizing within a family of functionals. Similarly, our discretized functionals admit exactly injective maps as the minimizers, empirically producing inversion-free discrete maps of triangle meshes. We design efficient numerical procedures for our problem that prioritize robust convergence paths. Experiments show that on challenging examples our methods can achieve up to orders of magnitude improvement over state-of-the-art, in terms of speed or quality. Moreover, we demonstrate how to optimize a generic energy in our framework while restricting to quasi-harmonic maps. 
    more » « less
  4. We consider a common problem occurring after using a statistical process control (SPC) method based on three-dimensional measurements: locate where on the surface of the part that triggered an out-of-control alarm there is a significant shape difference with respect to either an in-control part or its nominal (computer-aided design (CAD)) design. In the past, only registration-based solutions existed for this problem, which first orient and locate the part and its nominal design under the same frame of reference. Recently, spectral Laplacian methods have been proposed for the SPC of discrete parts and their measured surface meshes. These techniques provide an intrinsic solution to the SPC problem: that is, a solution exclusively based on data whose coordinates lie on the surfaces without making reference to their ambient space, thus avoiding registration. Registration-free methods avoid the computationally expensive, nonconvex registration step needed to align the parts as required by previous methods, eliminating registration errors, and they are important in industry because of the increasing use of portable noncontact scanners. In this paper, we first present a new registration-free solution to the post-SPC part defect localization problem. The approach uses a spectral decomposition of the Laplace–Beltrami operator in order to construct a functional map between the CAD and measured manifolds to locate defects on the suspected part. A computational complexity analysis demonstrates the approach scales better with the mesh size and is more stable than a registration-based approach. To reduce computational expense, a new mesh partitioning algorithm is presented to find a region of interest on the surface of the part where defects are more likely to exist. The functional map method involves a large number of point-to-point comparisons based on noisy measurements, and a new statistical thresholding method used to filter the false positives in the underlying massive multiple comparisons problem is also provided. Funding: This research was partially funded by the National Science Foundation [Grant CMMI 2121625]. Data Ethics & Reproducibility Note: There are no data ethics considerations. The code capsule is available on Code Ocean at https://codeocean.com/capsule/4615101/tree/v1 and in the e-Companion to this article (available https://doi.org/10.1287/ijds.2023.0030 ). 
    more » « less
  5. Abstract Computational fluid dynamics (CFD) modeling of left ventricle (LV) flow combined with patient medical imaging data has shown great potential in obtaining patient-specific hemodynamics information for functional assessment of the heart. A typical model construction pipeline usually starts with segmentation of the LV by manual delineation followed by mesh generation and registration techniques using separate software tools. However, such approaches usually require significant time and human efforts in the model generation process, limiting large-scale analysis. In this study, we propose an approach toward fully automating the model generation process for CFD simulation of LV flow to significantly reduce LV CFD model generation time. Our modeling framework leverages a novel combination of techniques including deep-learning based segmentation, geometry processing, and image registration to reliably reconstruct CFD-suitable LV models with little-to-no user intervention.1 We utilized an ensemble of two-dimensional (2D) convolutional neural networks (CNNs) for automatic segmentation of cardiac structures from three-dimensional (3D) patient images and our segmentation approach outperformed recent state-of-the-art segmentation techniques when evaluated on benchmark data containing both magnetic resonance (MR) and computed tomography(CT) cardiac scans. We demonstrate that through a combination of segmentation and geometry processing, we were able to robustly create CFD-suitable LV meshes from segmentations for 78 out of 80 test cases. Although the focus on this study is on image-to-mesh generation, we demonstrate the feasibility of this framework in supporting LV hemodynamics modeling by performing CFD simulations from two representative time-resolved patient-specific image datasets. 
    more » « less