skip to main content

Title: Automating Model Generation for Image-Based Cardiac Flow Simulation
Abstract Computational fluid dynamics (CFD) modeling of left ventricle (LV) flow combined with patient medical imaging data has shown great potential in obtaining patient-specific hemodynamics information for functional assessment of the heart. A typical model construction pipeline usually starts with segmentation of the LV by manual delineation followed by mesh generation and registration techniques using separate software tools. However, such approaches usually require significant time and human efforts in the model generation process, limiting large-scale analysis. In this study, we propose an approach toward fully automating the model generation process for CFD simulation of LV flow to significantly reduce LV CFD model generation time. Our modeling framework leverages a novel combination of techniques including deep-learning based segmentation, geometry processing, and image registration to reliably reconstruct CFD-suitable LV models with little-to-no user intervention.1 We utilized an ensemble of two-dimensional (2D) convolutional neural networks (CNNs) for automatic segmentation of cardiac structures from three-dimensional (3D) patient images and our segmentation approach outperformed recent state-of-the-art segmentation techniques when evaluated on benchmark data containing both magnetic resonance (MR) and computed tomography(CT) cardiac scans. We demonstrate that through a combination of segmentation and geometry processing, we were able to robustly create CFD-suitable LV meshes from segmentations more » for 78 out of 80 test cases. Although the focus on this study is on image-to-mesh generation, we demonstrate the feasibility of this framework in supporting LV hemodynamics modeling by performing CFD simulations from two representative time-resolved patient-specific image datasets. « less
Authors:
;
Award ID(s):
1663747
Publication Date:
NSF-PAR ID:
10192208
Journal Name:
Journal of Biomechanical Engineering
Volume:
142
Issue:
11
ISSN:
0148-0731
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We propose svMorph, a framework for interactive virtual sculpting of patient-specific vascular anatomic models. Our framework includes three tools for the creation of tortuosity, aneurysms, and stenoses in tubular vascular geometries. These shape edits are performed via geometric operations on the surface mesh and vessel centerline curves of the input model. The tortuosity tool also uses the physics-based Oriented Particles method, coupled with linear blend skinning, to achieve smooth, elastic-like deformations. Our tools can be applied separately or in combination to produce simulation-suitable morphed models. They are also compatible with popular vascular modeling software, such as SimVascular. To illustrate our tools, we morph several image-based, patient-specific models to create a range of shape changes and simulate the resulting hemodynamics via three-dimensional, computational fluid dynamics. We also demonstrate the ability to quickly estimate the hemodynamic effects of the shape changes via automated generation of associated zero-dimensional lumped-parameter models.
  2. Cardiac Cine Magnetic Resonance (CMR) Imaging has made a significant paradigm shift in medical imaging technology, thanks to its capability of acquiring high spatial and temporal resolution images of different structures within the heart that can be used for reconstructing patient-specific ventricular computational models. In this work, we describe the development of dynamic patient-specific right ventricle (RV) models associated with normal subjects and abnormal RV patients to be subsequently used to assess RV function based on motion and kinematic analysis. We first constructed static RV models using segmentation masks of cardiac chambers generated from our accurate, memory-efficient deep neural architecture - CondenseUNet - featuring both a learned group structure and a regularized weight-pruner to estimate the motion of the right ventricle. In our study, we use a deep learning-based deformable network that takes 3D input volumes and outputs a motion field which is then used to generate isosurface meshes of the cardiac geometry at all cardiac frames by propagating the end-diastole (ED) isosurface mesh using the reconstructed motion field. The proposed model was trained and tested on the Automated Cardiac Diagnosis Challenge (ACDC) dataset featuring 150 cine cardiac MRI patient datasets. The isosurface meshes generated using the proposed pipeline weremore »compared to those obtained using motion propagation via traditional non-rigid registration based on several performance metrics, including Dice score and mean absolute distance (MAD).« less
  3. Abstract Numerical simulations for computational hemodynamics in clinical settings require a combination of many ingredients, mathematical models, solvers and patient-specific data. The sensitivity of the solutions to these factors may be critical, particularly when we have a partial or noisy knowledge of data. Uncertainty quantification is crucial to assess the reliability of the results. We present here an extensive sensitivity analysis in aortic flow simulations, to quantify the dependence of clinically relevant quantities to the patient-specific geometry and the inflow boundary conditions. Geometry and inflow conditions are generally believed to have a major impact on numerical simulations. We resort to a global sensitivity analysis, (i.e., not restricted to a linearization around a working point), based on polynomial chaos expansion (PCE) and the associated Sobol' indices. We regard the geometry and the inflow conditions as the realization of a parametric stochastic process. To construct a physically consistent stochastic process for the geometry, we use a set of longitudinal-in-time images of a patient with an abdominal aortic aneurysm (AAA) to parametrize geometrical variations. Aortic flow is highly disturbed during systole. This leads to high computational costs, even amplified in a sensitivity analysis -when many simulations are needed. To mitigate this, we considermore »here a large Eddy simulation (LES) model. Our model depends in particular on a user-defined parameter called filter radius. We borrowed the tools of the global sensitivity analysis to assess the sensitivity of the solution to this parameter too. The targeted quantities of interest (QoI) include: the total kinetic energy (TKE), the time-average wall shear stress (TAWSS), and the oscillatory shear index (OSI). The results show that these indexes are mostly sensitive to the geometry. Also, we find that the sensitivity may be different during different instants of the heartbeat and in different regions of the domain of interest. This analysis helps to assess the reliability of in silico tools for clinical applications.« less
  4. Computational fluid dynamics (CFD) is increasingly used to study blood flows in patient-specific arteries for understanding certain cardiovascular diseases. The techniques work quite well for relatively simple problems but need improvements when the problems become harder when (a) the geometry becomes complex (eg, a few branches to a full pulmonary artery), (b) the model becomes more complex (eg, fluid-only to coupled fluid-structure interaction), (c) both the fluid and wall models become highly nonlinear, and (d) the computer on which we run the simulation is a supercomputer with tens of thousands of processor cores. To push the limit of CFD in all four fronts, in this paper, we develop and study a highly parallel algorithm for solving a monolithically coupled fluid-structure system for the modeling of the interaction of the blood flow and the arterial wall. As a case study, we consider a patient-specific, full size pulmonary artery obtained from computed tomography (CT) images, with an artificially added layer of wall with a fixed thickness. The fluid is modeled with a system of incompressible Navier-Stokes equations, and the wall is modeled by a geometrically nonlinear elasticity equation. As far as we know, this is the first time the unsteady blood flowmore »in a full pulmonary artery is simulated without assuming a rigid wall. The proposed numerical algorithm and software scale well beyond 10 000 processor cores on a supercomputer for solving the fluid-structure interaction problem discretized with a stabilized finite element method in space and an implicit scheme in time involving hundreds of millions of unknowns.« less
  5. Faithful, accurate, and successful cardiac biomechanics and electrophysiological simulations require patient-specific geometric models of the heart. Since the cardiac geometry consists of highly-curved boundaries, the use of high-order meshes with curved elements would ensure that the various curves and features present in the cardiac geometry are well-captured and preserved in the corresponding mesh. Most other existing mesh generation techniques require computer-aided design files to represent the geometric boundary, which are often not available for biomedical applications. Unlike such methods, our technique takes a high-order surface mesh, generated from patient medical images, as input and generates a high-order volume mesh directly from the curved surface mesh. In this paper, we use our direct high-order curvilinear tetrahedral mesh generation method [1] to generate several second-order cardiac meshes. Our meshes include the left ventricle myocardia of a healthy heart and hearts with dilated and hypertrophic cardiomyopathy. We show that our high-order cardiac meshes do not contain inverted elements and are of sufficiently high quality for use in cardiac finite element simulations.