skip to main content


Title: Multi-Trait Genome-Wide Association Studies Reveal Loci Associated with Maize Inflorescence and Leaf Architecture
Abstract Maize inflorescence is a complex phenotype that involves the physical and developmental interplay of multiple traits. Given the evidence that genes could pleiotropically contribute to several of these traits, we used publicly available maize data to assess the ability of multivariate genome-wide association study (GWAS) approaches to identify pleiotropic quantitative trait loci (pQTL). Our analysis of 23 publicly available inflorescence and leaf-related traits in a diversity panel of n = 281 maize lines genotyped with 376,336 markers revealed that the two multivariate GWAS approaches we tested were capable of identifying pQTL in genomic regions coinciding with similar associations found in previous studies. We then conducted a parallel simulation study on the same individuals, where it was shown that multivariate GWAS approaches yielded a higher true-positive quantitative trait nucleotide (QTN) detection rate than comparable univariate approaches for all evaluated simulation settings except for when the correlated simulated traits had a heritability of 0.9. We therefore conclude that the implementation of state-of-the-art multivariate GWAS approaches is a useful tool for dissecting pleiotropy and their more widespread implementation could facilitate the discovery of genes and other biological mechanisms underlying maize inflorescence.  more » « less
Award ID(s):
1733606
NSF-PAR ID:
10185336
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Plant and Cell Physiology
Volume:
61
Issue:
8
ISSN:
1471-9053
Page Range / eLocation ID:
1427 to 1437
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Quantification of the simultaneous contributions of loci to multiple traits, a phenomenon called pleiotropy, is facilitated by the increased availability of high-throughput genotypic and phenotypic data. To understand the prevalence and nature of pleiotropy, the ability of multivariate and univariate genome-wide association study (GWAS) models to distinguish between pleiotropic and non-pleiotropic loci in linkage disequilibrium (LD) first needs to be evaluated. Therefore, we used publicly available maize and soybean genotypic data to simulate multiple pairs of traits that were either (i) controlled by quantitative trait nucleotides (QTNs) on separate chromosomes, (ii) controlled by QTNs in various degrees of LD with each other, or (iii) controlled by a single pleiotropic QTN. We showed that multivariate GWAS could not distinguish between QTNs in LD and a single pleiotropic QTN. In contrast, a unique QTN detection rate pattern was observed for univariate GWAS whenever the simulated QTNs were in high LD or pleiotropic. Collectively, these results suggest that multivariate and univariate GWAS should both be used to infer whether or not causal mutations underlying peak GWAS associations are pleiotropic. Therefore, we recommend that future studies use a combination of multivariate and univariate GWAS models, as both models could be useful for identifying and narrowing down candidate loci with potential pleiotropic effects for downstream biological experiments. 
    more » « less
  2. Qu, Li-Jia (Ed.)

    Pleiotropy—when a single gene controls two or more seemingly unrelated traits—has been shown to impact genes with effects on flowering time, leaf architecture, and inflorescence morphology in maize. However, the genome-wide impact of biological pleiotropy across all maize phenotypes is largely unknown. Here, we investigate the extent to which biological pleiotropy impacts phenotypes within maize using GWAS summary statistics reanalyzed from previously published metabolite, field, and expression phenotypes across the Nested Association Mapping population and Goodman Association Panel. Through phenotypic saturation of 120,597 traits, we obtain over 480 million significant quantitative trait nucleotides. We estimate that only 1.56–32.3% of intervals show some degree of pleiotropy. We then assess the relationship between pleiotropy and various biological features such as gene expression, chromatin accessibility, sequence conservation, and enrichment for gene ontology terms. We find very little relationship between pleiotropy and these variables when compared to permuted pleiotropy. We hypothesize that biological pleiotropy of common alleles is not widespread in maize and is highly impacted by nuisance terms such as population structure and linkage disequilibrium. Natural selection on large standing natural variation in maize populations may target wide and large effect variants, leaving the prevalence of detectable pleiotropy relatively low.

     
    more » « less
  3. Abstract

    The integrated responses of biological systems to genetic and environmental variation result in substantial covariance in multiple phenotypes. The resultant pleiotropy, environmental effects, and genotype‐by‐environmental interactions (GxE) are foundational to our understanding of biology and genetics. Yet, the treatment of correlated characters, and the identification of the genes encoding functions that generate this covariance, has lagged. As a test case for analyzing the genetic basis underlying multiple correlated traits, we analyzed maize kernel ionomes from Intermated B73 x Mo17 (IBM) recombinant inbred populations grown in 10 environments. Plants obtain elements from the soil through genetic and biochemical pathways responsive to physiological state and environment. Most perturbations affect multiple elements which leads theionome, the full complement of mineral nutrients in an organism, to vary as an integrated network rather than a set of distinct single elements. We compared quantitative trait loci (QTL) determining single‐element variation toQTLthat predict variation in principal components (PCs) of multiple‐element covariance. Single‐element and multivariate approaches detected partially overlapping sets of loci.QTLinfluencing trait covariation were detected at loci that were not found by mapping single‐element traits. Moreover, this approach permitted testing environmental components of trait covariance, and identified multi‐element traits that were determined by both genetic and environmental factors as well as genotype‐by‐environment interactions. Growth environment had a profound effect on the elemental profiles and multi‐element phenotypes were significantly correlated with specific environmental variables.

     
    more » « less
  4. Abstract

    A collection of 163 accessions, includingSolanum pimpinellifolium,Solanum lycopersicumvar.cerasiformeandSolanum lycopersicumvar.lycopersicum, was selected to represent the genetic and morphological variability of tomato at its centers of origin and domestication: Andean regions of Peru and Ecuador and Mesoamerica. The collection is enriched withS. lycopersicumvar.cerasiformefrom the Amazonian region that has not been analyzed previously nor used extensively. The collection has been morphologically characterized showing diversity for fruit, flower and vegetative traits. Their genomes were sequenced in the Varitome project and are publicly available (solgenomics.net/projects/varitome). The identified SNPs have been annotated with respect to their impact and a total number of 37,974 out of 19,364,146 SNPs have been described as high impact by the SnpEeff analysis. GWAS has shown associations for different traits, demonstrating the potential of this collection for this kind of analysis. We have not only identified known QTLs and genes, but also new regions associated with traits such as fruit color, number of flowers per inflorescence or inflorescence architecture. To speed up and facilitate the use of this information, F2 populations were constructed by crossing the whole collection with three different parents. This F2 collection is useful for testing SNPs identified by GWAs, selection sweeps or any other candidate gene. All data is available on Solanaceae Genomics Network and the accession and F2 seeds are freely available at COMAV and at TGRC genebanks. All these resources together make this collection a good candidate for genetic studies.

     
    more » « less
  5. Abstract

    Genomic regions containing loci with effect sizes that interact with environmental factors are desirable targets for selection because of increasingly unpredictable growing seasons. Although selecting upon such gene‐by‐environment (G × E) loci is vital, identifying significantly associated loci is challenging due to the multiple testing correction. Consequently, G × E loci of small‐ to moderate effect sizes may never be identified via traditional genome‐wide association studies (GWAS). Variance GWAS (vGWAS) have been previously shown to identify G × E loci. Combined with its inherent reduction in the severity of multiple testing, we hypothesized that vGWAS could be successfully used to identify genomic regions likely to contain G × E effects. We used publicly available genotypic and phenotypic data in maize (Zea maysL.) to test the ability of two vGWAS approaches to identify G × E loci controlling two flowering traits. We observed high inflation of from both approaches. This suggests that these two vGWAS approaches are not suitable to the task of identifying G × E loci. We advocate that similar future applications of vGWAS use more sophisticated models that can adequately control the inflation of . Otherwise, the application of vGWAS to search for G × E effects that are critical for combating the effects of climate change will not reach its full potential.

     
    more » « less