Abstract Solid‐phase synthesis of RNA oligonucleotides over 100 nt in length remains challenging due to the complexity of purification of the target strands from the failure sequences. This article describes a non‐chromatographic procedure that will enable routine solid‐phase synthesis and purification of long RNA strands. The optimized five‐step process is based on bio‐orthogonal inverse electron demand Diels‐Alder chemistry betweentrans‐cyclooctene (TCO) and tetrazine (Tz), and entails solid‐phase synthesis of RNA on a photo‐labile support. The target oligonucleotide strands are selectively tagged with Tz while on‐support. After photocleavage from the solid support, the target oligonucleotide strands can be captured and purified from the failure sequences using immobilized TCO. The approach can be applied for purification of 76‐nt long tRNA and 101‐nt long sgRNA for CRISPR experiments. Purity of the isolated oligonucleotides should be evaluated using gel electrophoresis, while functional fidelity of the sgRNA should be confirmed using CRISPR‐Cas9 experiments. © 2021 Wiley Periodicals LLC. Basic Protocol: Five‐step non‐chromatographic purification of synthetic RNA oligonucleotides Support Protocol 1: Synthesis of the components that are required for the non‐chromatographic purification of long RNA oligonucleotides. Support Protocol 2: Solid‐phase RNA synthesis
more »
« less
Detection and Quantification of RNA Phosphorothioate Modifications Using Mass Spectrometry
Abstract This article describes a protocol for detecting and quantifying RNA phosphorothioate modifications in cellular RNA samples. Starting from solid‐phase synthesis of phosphorothioate RNA dinucleotides, followed by purification with reversed‐phase HPLC, phosphorothioate RNA dinucleotide standards are prepared for UPLC‐MS and LC‐MS/MS methods. RNA samples are extracted from cells using TRIzol reagent, then digested with a nuclease mixture and analyzed by mass spectrometry. UPLC‐MS is employed first to identify RNA phosphorothioate modifications. An optimized LC‐MS/MS method is then employed to quantify the frequency of RNA phosphorothioate modifications in a series of model cells. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Synthesis, purification, and characterization of RNA phosphorothioate dinucleotides Basic Protocol 2: Digestion of RNA samples extracted from cells Basic Protocol 3: Detection and quantification of RNA phosphorothioate modifications by mass spectrometry
more »
« less
- PAR ID:
- 10185509
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Current Protocols in Nucleic Acid Chemistry
- Volume:
- 82
- Issue:
- 1
- ISSN:
- 1934-9270
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chemical modifications to protein encoding messenger RNAs (mRNAs) influence their localization, translation, and stability within cells. Over 15 different types of mRNA modifications have been observed by sequencing and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) approaches. While LC-MS/MS is arguably the most essential tool available for studying analogous protein post-translational modifications, the high-throughput discovery and quantitative characterization of mRNA modifications by LC-MS/MS has been hampered by the difficulty of obtaining sufficient quantities of pure mRNA and limited sensitivities for modified nucleosides. We have overcome these challenges by improving the mRNA purification and LC-MS/MS pipelines. The methodologies we developed result in no detectable non-coding RNA modifications signals in our purified mRNA samples, quantify 50 ribonucleosides in a single analysis, and provide the lowest limit of detection reported for ribonucleoside modification LC-MS/MS analyses. These advancements enabled the detection and quantification of 13 S. cerevisiae mRNA ribonucleoside modifications and reveal the presence of four new S. cerevisiae mRNA modifications at low to moderate levels (1-methyguanosine, N 2-methylguanosine, N 2, N 2-dimethylguanosine, and 5-methyluridine). We identified four enzymes that incorporate these modifications into S. cerevisiae mRNAs (Trm10, Trm11, Trm1, and Trm2, respectively), though our results suggest that guanosine and uridine nucleobases are also non-enzymatically methylated at low levels. Regardless of whether they are incorporated in a programmed manner or as the result of RNA damage, we reasoned that the ribosome will encounter the modifications that we detect in cells. To evaluate this possibility, we used a reconstituted translation system to investigate the consequences of modifications on translation elongation. Our findings demonstrate that the introduction of 1-methyguanosine, N 2-methylguanosine and 5-methyluridine into mRNA codons impedes amino acid addition in a position dependent manner. This work expands the repertoire of nucleoside modifications that the ribosome must decode in S. cerevisiae. Additionally, it highlights the challenge of predicting the effect of discrete modified mRNA sites on translation de novo because individual modifications influence translation differently depending on mRNA sequence context.more » « less
-
Abstract Histone post‐translational modifications (PTMs) play important roles in many biological processes, including gene regulation and chromatin dynamics, and are thus of high interest across many fields of biological research. Chromatin immunoprecipitation coupled with sequencing (ChIP‐seq) is a powerful tool to profile histone PTMsin vivo. This method, however, is largely dependent on the specificity and availability of suitable commercial antibodies. While mass spectrometry (MS)–based proteomic approaches to quantitatively measure histone PTMs have been developed in mammals and several other model organisms, such methods are currently not readily available in plants. One major challenge for the implementation of such methods in plants has been the difficulty in isolating sufficient amounts of pure, high‐quality histones, a step rendered difficult by the presence of the cell wall. Here, we developed a high‐yielding histone extraction and purification method optimized forArabidopsis thalianathat can be used to obtain high‐quality histones for MS. In contrast to other methods used in plants, this approach is relatively simple, and does not require membranes or additional specialized steps, such as gel excision or chromatography, to extract highly purified histones. We also describe methods for producing MS‐ready histone peptides through chemical labeling and digestion. Finally, we describe an optimized method to quantify and analyze the resulting histone PTM data using a modified version of EpiProfile 2.0 for Arabidopsis. In all, the workflow described here can be used to measure changes to histone PTMs resulting from various treatments, stresses, and time courses, as well as in different mutant lines. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Nuclear isolation and histone acid extraction Basic Protocol 2: Peptide labeling, digestion, and desalting Basic Protocol 3: Histone HPLC‐MS/MS and data analysismore » « less
-
Abstract This article contains detailed synthetic protocols for preparation of 5‐cyanomethyluridine (cnm5U) and 5‐cyanouridine (cn5U) phosphoramidites. The synthesis of the cnm5U phosphoramidite building block starts with commercially available 5‐methyluridine (m5C), followed by bromination of the 5‐methyl group to install the cyano moiety using TMSCN/TBAF. The cn5U phosphoramidite is obtained by regular Vorbrüggen glycosylation of the protected ribofuranose with silylated 5‐cyanouracil. These two modified phosphoramidites are suitable for synthesis of RNA oligonucleotides on solid phase using conventional amidite chemistry. Our protocol provides access to two novel building blocks for constructing RNA‐based therapeutics. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of cnm5U and cn5U phosphoramidites Basic Protocol 2: Synthesis, purification, and characterization of cnm5U‐ and cn5U‐modified RNA oligonucleotidesmore » « less
-
Abstract Histone acetyltransferases (HATs, also known as lysine acetyltransferases, KATs) catalyze acetylation of their cognate protein substrates using acetyl‐CoA (Ac‐CoA) as a cofactor and are involved in various physiological and pathological processes. Advances in mass spectrometry‐based proteomics have allowed the discovery of thousands of acetylated proteins and the specific acetylated lysine sites. However, due to the rapid dynamics and functional redundancy of HAT activities, and the limitation of using antibodies to capture acetylated lysines, it is challenging to systematically and precisely define both the substrates and sites directly acetylated by a given HAT. Here, we describe a chemoproteomic approach to identify and profile protein substrates of individual HAT enzymes on the proteomic scale. The approach involves protein engineering to enlarge the Ac‐CoA binding pocket of the HAT of interest, such that a mutant form is generated that can use functionalized acyl‐CoAs as a cofactor surrogate to bioorthogonally label its protein substrates. The acylated protein substrates can then be chemoselectively conjugated either with a fluorescent probe (for imaging detection) or with a biotin handle (for streptavidin pulldown and chemoproteomic identification). This modular chemical biology approach has been successfully implemented to identify protein substrates of p300, GCN5, and HAT1, and it is expected that this method can be applied to profile and identify the sub‐acetylomes of many other HAT enzymes. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Labeling HAT protein substrates with azide/alkyne‐biotin Alternate Protocol: Labeling protein substrates of HATs with azide/alkyne‐TAMRA for in‐gel visualization Support Protocol 1: Expression and purification of HAT mutants Support Protocol 2: Synthesis of Ac‐CoA surrogates Basic Protocol 2: Streptavidin enrichment of biotinylated HAT substrates Basic Protocol 3: Chemoproteomic identification of HAT substrates Basic Protocol 4: Validation of specific HAT substrates with western blottingmore » « less
An official website of the United States government
