Immersive Analytics (IA) and consumer adoption of augmented reality (AR) and virtual reality (VR) head-mounted displays (HMDs) are both rapidly growing. When used in conjunction, stereoscopic IA environments can offer improved user understanding and engagement; however, it is unclear how the choice of stereoscopic display impacts user interactions within an IA environment. This paper presents a pilot study that examines the impact of stereoscopic display choice on object manipulation and environmental navigation using consumeravailable AR and VR HMDs. Our observations indicate that the display can impact how users manipulate virtual content and how they navigate the environment.
more »
« less
Generalized Structure for Adaptable Immersive Learning Environments
Immersive Learning Environments (ILEs) developed in Virtual and Augmented Reality (VR/AR) are a novel pro- fessional training platform. An ILE can facilitate an Adaptive Learning System (ALS), which has proven beneficial to the learning process. However, there is no existing AI-ready ILE that facilitates collecting multimedia multimodal data from the environment and users for training AI models, nor allows for the learning contents and complex learning process to be dynamically adapted by an ALS. This paper proposes a novel multimedia system in VR/AR to dynamically build ILEs for a wide range of use-cases, based on a description language for the generalizable ILE structure. It will detail users’ paths and conditions for completing learning activities, and a content adaptation algorithm to update the ILE at runtime. Human and AI systems can customize the environment based on user learning metrics. Results show that this framework is efficient and low- overhead, suggesting a path to simplifying and democratizing the ILE development without introducing bloat. Index Terms—virtual reality, augmented reality, content generation, immersive learning, 3D environments
more »
« less
- Award ID(s):
- 2029557
- PAR ID:
- 10339243
- Date Published:
- Journal Name:
- IEEE 22nd International Conference on Information Reuse and Integration for Data Science (IRI)
- Page Range / eLocation ID:
- 294 to 301
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Immersive environments enable users to engage in embodied interaction, enhancing the sensemaking processes involved in completing tasks such as immersive analytics. Previous comparative studies on immersive analytics using augmented and virtual realities have revealed that users employ different strategies for data interpretation and text-based analytics depending on the environment. Our study seeks to investigate how augmented and virtual reality influences sensemaking processes in quantitative immersive analytics. Our results, derived from a diverse group of participants, indicate that users demonstrate comparable performance in both environments. However, it was observed that users exhibit a higher tolerance for cognitive load in VR and travel further in AR. Based on our findings, we recommend providing users with the option to switch between AR and VR, thereby enabling them to select an environment that aligns with their preferences and task requirements.more » « less
-
In today’s world, augmented reality and virtual reality (AR/VR) technologies have become more accessible to the public than ever. This brings the possibility of immersive learning to the forefront of education for future generations. However, there is still much to discover and improve in using these technologies to analyze and understand learning. This paper explores the utilization of data captured through AR/VR headsets during an immersive training program for industrial robotics. This includes data on time spent, eye gaze, and hand movement during a range of activities to track a learner’s understanding of the content and intelligently estimate learner confidence within these environments using deep learning. Leveraging a dataset that comprises responses and confidence levels from 10 individuals across 35 questions, we aim to improve the uses and applicability of confidence estimation. We explore the possibility of training a model using learners’ data to dynamically fine-tune lessons and activities for each individual, thereby improving performance. We demonstrate that a pre-trained compact LSTM classification model can be fine-tuned with relatively small data, for enhanced performance on an individual basis for better personalized learning.more » « less
-
Personalized learning, which customizes content and instructional sequences to account for differences in ability, experience, and sociocultural backgrounds, holds great promise for transforming education. This transformation is increasingly driven by significant advancements in Artificial Intelligence (AI). AI enables detailed analysis and reporting of learners' performance data, paving the way for the development of intelligent adaptive learning systems that offer personalized feedback aligned with each learner’s unique needs and progress. In parallel, immersive technologies are playing a pivotal role in enhancing educational experiences. Technologies such as Virtual Reality (VR) and Augmented Reality (AR) create engaging, interactive environments that deepen learners' understanding and retention of complex concepts. Dr. Vassigh's presentation explores the integration of AI and VR in education, illustrated through a case study from an ongoing project. The talk will highlight the refinement of learning processes through these technologies and demonstrate how they can impact learner engagement and performance.more » « less
-
This paper introduces the Intelligent Learning Platform for Robotics Operations (IL-PRO), a Virtual Reality (VR) system designed to enhance robotics training in the Architecture, Engineering, and Construction (AEC) industry. IL-PRO addresses the growing need for effective training methods as the AEC sector adopts robotic automation. The system integrates VR technology with game-assisted learning, combining online multimedia lessons for theory with immersive VR tasks for practical skills. Developed iteratively using Design-Based Research principles, IL-PRO incorporates realistic robot simulations and progressive task complexity. The VR environment, built in Unity, aims to enhance engagement, motor coordination, and spatial awareness in robotics training. While future goals include AI-driven personalized instruction, this work-in-progress focuses on VR curriculum development and implementation. The paper concludes by discussing future directions, including curriculum expansion and cross-institutional adoption, to establish new benchmarks in innovative robotics education for the AEC industry.more » « less
An official website of the United States government

