Germanium (Ge) is deemed as one of the most promising alloying anodes for rechargeable lithium‐ion batteries (LIBs) due to its large theoretical capacity, high electrical conductivity, fast lithium‐ion diffusivity, and mechanical robustness. However, Ge‐based anodes suffer from large volume changes during lithiation and delithiation, which can deteriorate their electrochemical performance rapidly. Herein, the large volume change issue is effectively addressed using an asymmetric membrane structure that is prepared using a phase‐inversion method in combination with hydrogen peroxide etching and surface coating. The asymmetric Ge membrane etched by ≈30 wt% H2O2at 90 °C for 30 s demonstrates a capacity retention higher than 80% in 50 cycles at 160 mA g−1. Coating the H2O2‐etched Ge membrane with carbonaceous membranes can further improve the retention up to 95% in 50 cycles at 160 mA g−1, whereas ≈100% capacity of 700 mAh g−1can be maintained in 170 cycles at 400 mA g−1. A combination of electron microscopy, spectrophotometry, and X‐ray analyses confirms the electrochemical performance of asymmetric Ge membranes as the LIB anode can be significantly affected by membrane geometry, the duration of hydrogen peroxide etching, carbonaceous membrane coating, and Ge concentration.
more »
« less
Effect of synthesis pH and EDTA on iron hexacyanoferrate for sodium-ion batteries
Iron hexacyanoferrate (FeHCF) particles were synthesized at room temperature with ethylenediaminetetraacetic acid (EDTA) at varying pH. The presence of EDTA produced faceted particles and increasing synthesis pH resulted in slower reaction kinetics and larger particles with lower water content and fewer anion vacancies determined by TGA and Mössbauer spectroscopy. Electrochemical testing of sodium metal half cells revealed higher capacity in FeHCF particles grown at lower pH with EDTA, obtaining a maximum discharge capacity of 151 mA h g −1 with 79% capacity retention after 100 cycles at 100 mA g −1 and a rate capability of 122 mA h g −1 at 3.2 A g −1 . In contrast, particles grown at higher pH had stunted low-spin Fe redox activity but with improved long-term cyclic stability. These findings demonstrate that small changes in synthesis pH can greatly affect the growth and electrochemical properties of FeHCF when using a pH sensitive chelating agent such as EDTA.
more »
« less
- Award ID(s):
- 1803256
- PAR ID:
- 10185788
- Date Published:
- Journal Name:
- Sustainable Energy & Fuels
- Volume:
- 4
- Issue:
- 6
- ISSN:
- 2398-4902
- Page Range / eLocation ID:
- 2884 to 2891
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Nickel phosphide (Ni 5 P 4 ) nanosheets are synthesized using in situ chemical vapor deposition of P on Ni foam. The thickness of the as-synthesized Ni 5 P 4 film is determined to be ∼5 nm, using atomic force microscopy (AFM). The small thickness shortens the diffusion path of Li ions and results in fast ion transport. In addition, the 2D Ni 5 P 4 nanosheets seamlessly connect to the Ni foam, which facilitates electron transfer between Ni 5 P 4 and the Ni current collector. Therefore, the binder/carbon free-nickel supported Ni 5 P 4 shows fast rate performance as an anode for lithium-ion batteries (LIBs). The specific capacity of 2D Ni 5 P 4 is obtained as 600 mA h g −1 at a cycling rate of 0.1C, approaching the theoretical capacity of 768 mA h g −1 . Even at a rate of 0.5C, the capacity remains as 450 mA h g −1 over 100 cycles. A capacity >100 mA h g −1 is retained at a very high rate of 20C. Ni 5 P 4 also exhibits a low voltage of ∼0.5 V with respect to Li metal, which makes it a suitable negative electrode for LIBs. In operando 31 P NMR and 7 Li NMR are employed to probe the lithiation and de-lithiation mechanisms upon electrochemical cycling.more » « less
-
Molybdenum disulfide (MoS 2 ) may be a promising alternative for lithium ion batteries (LIBs) because it offers a unique layered crystal structure with a large and tunable distance between layers. This enables the anticipated excellent rate and cycling stability because they can promote the reversible lithium ion intercalation and de-intercalation without huge volume change which consequently prevents the pulverization of active materials during repeated charge and discharge processes. Herein, we prepared hierarchical MoS 2 –carbon (MoS 2 –C) microspheres via a continuous and scalable ultrasonic nebulization assisted route. The structure, composition, and electrochemical properties are investigated in detail. The MoS 2 –C microspheres consist of few-layer MoS 2 nanosheets bridged by carbon, which separates the exfoliated MoS 2 layers and prevents their aggregation and restacking, thus leading to improved kinetic, enhanced conductivity and structural integrity. The novel architecture offers additional merits such as overall large size and high packing density, which promotes their practical applications. The MoS 2 –C microspheres have been demonstrated with excellent electrochemical performances in terms of low resistance, high capacity even at large current density, stable cycling performance, etc. The electrodes exhibited 800 mA h g −1 at 1000 mA g −1 over 170 cycles. At a higher current density of 3200 mA g −1 , a capacity of 730 mA h g −1 can be also maintained. The MoS 2 –C microspheres are practically applicable not only because of the continuous and large scale synthesis via the current strategy, but also the possess a robust and integrated architecture which ensures the excellent electrochemical properties.more » « less
-
The shuttling of polysulfides with sluggish redox kinetics has severely retarded the advancement of lithium–sulfur (Li–S) batteries. In this work oxygen-deficient titanium dioxide (TiO 2 ) has been investigated as a novel functional host for Li–S batteries. Experimental and first-principles density functional theory (DFT) studies reveal that oxygen vacancies help to reduce polysulfide shuttling and catalyze the redox kinetics of sulfur/polysulfides during cycling. Consequently, the resulting TiO 2 /S composite cathode manifests superior electrochemical properties in terms of high capacity (1472 mA h g −1 at 0.2C), outstanding rate capability (571 mA h g −1 at 2C), and excellent cycling properties (900 mA h g −1 over 100 cycles at 0.2C). The present strategy offers a viable way through vacancy engineering for the design and optimization of high-performance electrodes for advanced Li–S batteries and other electrochemical devices.more » « less
-
Hydrated vanadium pentoxide (VOH) can deliver a gravimetric capacity as high as 400 mA h g −1 owing to the variable valence states of the V cation from 5+ to 3+ in an aqueous zinc ion battery. The incorporation of divalent transition metal cations has been demonstrated to overcome the structural instability, sluggish kinetics, fast capacity degradation, and serious polarization. The current study reveals that the catalytic effects of transition metal cations are probably the key to the significantly improved electrochemical properties and battery performance because of the higher covalent character of 55% in the Cu–O bond in comparison with 32% in the Mg–O bond in the respective samples. Cu( ii ) pre-inserted VOH (CuVOH) possesses a significantly enhanced intercalation storage capacity, an increased discharge voltage, great transport properties, and reduced polarization, while both VOH and Mg( ii ) pre-inserted VOH (MgVOH) demonstrate similar electrochemical properties and performances, indicating that the incorporation of Mg cations has little or no impact. For example, CuVOH has a redox voltage gap of 0.02 V, much smaller than 0.25 V for VOH and 0.27 V for MgVOH. CuVOH shows an enhanced exchange current density of 0.23 A g −1 , compared to 0.20 A g −1 for VOH and 0.19 A g −1 for MgVOH. CuVOH delivers a zinc ion storage capacity of 379 mA h g −1 , higher than 349 mA h g −1 for MgVOH and 337 mA h g −1 for VOH at 0.5 A g −1 . CuVOH shows an energy efficiency of 72%, superior to 53% for VOH and 55% for MgVOH. All of the results suggest that pre-inserted Cu( ii ) cations played a critical role in catalyzing the zinc ion intercalation reaction, while the Mg( ii ) cations did not exert a detectable catalytic effect.more » « less
An official website of the United States government

