skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Node-to-Node and Node-to-Medium Synchronization in Quorum Sensing Networks Affected by State-Dependent Noise
Award ID(s):
1755431
PAR ID:
10185912
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
SIAM journal on applied dynamical systems
Volume:
18
Issue:
4
ISSN:
1536-0040
Page Range / eLocation ID:
1934-1953
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The past decades have witnessed the prosperity of graph mining, with a multitude of sophisticated models and algorithms designed for various mining tasks, such as ranking, classification, clustering and anomaly detection. Generally speaking, the vast majority of the existing works aim to answer the following question, that is, given a graph, what is the best way to mine it? In this paper, we introduce the graph sanitation problem, to an- swer an orthogonal question. That is, given a mining task and an initial graph, what is the best way to improve the initially provided graph? By learning a better graph as part of the input of the mining model, it is expected to benefit graph mining in a variety of settings, ranging from denoising, imputation to defense. We formulate the graph sanitation problem as a bilevel optimization problem, and fur- ther instantiate it by semi-supervised node classification, together with an effective solver named GaSoliNe. Extensive experimental results demonstrate that the proposed method is (1) broadly appli- cable with respect to various graph neural network models and flexible graph modification strategies, (2) effective in improving the node classification accuracy on both the original and contaminated graphs in various perturbation scenarios. In particular, it brings up to 25% performance improvement over the existing robust graph neural network methods. 
    more » « less