skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graph Sanitation with Application to Node Classification
The past decades have witnessed the prosperity of graph mining, with a multitude of sophisticated models and algorithms designed for various mining tasks, such as ranking, classification, clustering and anomaly detection. Generally speaking, the vast majority of the existing works aim to answer the following question, that is, given a graph, what is the best way to mine it? In this paper, we introduce the graph sanitation problem, to an- swer an orthogonal question. That is, given a mining task and an initial graph, what is the best way to improve the initially provided graph? By learning a better graph as part of the input of the mining model, it is expected to benefit graph mining in a variety of settings, ranging from denoising, imputation to defense. We formulate the graph sanitation problem as a bilevel optimization problem, and fur- ther instantiate it by semi-supervised node classification, together with an effective solver named GaSoliNe. Extensive experimental results demonstrate that the proposed method is (1) broadly appli- cable with respect to various graph neural network models and flexible graph modification strategies, (2) effective in improving the node classification accuracy on both the original and contaminated graphs in various perturbation scenarios. In particular, it brings up to 25% performance improvement over the existing robust graph neural network methods.  more » « less
Award ID(s):
1947135 2134079
PAR ID:
10332504
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Graph Sanitation with Application to Node Classification
Page Range / eLocation ID:
1136 to 1147
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-sourced networks naturally appear in many application domains, ranging from bioinformatics, social networks, neuroscience to management. Although state-of-the-art offers rich models and algorithms to find various patterns when input networks are given, it has largely remained nascent on how vulnerable the mining results are due to the adversarial attacks. In this paper, we address the problem of attacking multi-network mining through the way of deliberately perturbing the networks to alter the mining results. The key idea of the proposed method (ADMIRING) is effective influence functions on the Sylvester equation defined over the input networks, which plays a central and unifying role in various multi-network mining tasks. The proposed algorithms bear two main advantages, including (1) effectiveness, being able to accurately quantify the rate of change of the mining results in response to attacks; and (2) generality, being applicable to a variety of multi-network mining tasks ( e.g., graph kernel, network alignment, cross-network node similarity) with different attacking strategies (e.g., edge/node removal, attribute alteration). 
    more » « less
  2. This work investigates the challenge of learning and reasoning for Commonsense Question Answering given an external source of knowledge in the form of a knowledge graph (KG). We propose a novel graph neural network architecture, called Dynamic Relevance Graph Network (DRGN). DRGN operates on a given KG subgraph based on the question and answers entities and uses the relevance scores between the nodes to establish new edges dynamically for learning node representations in the graph network. This explicit usage of relevance as graph edges has the following advantages, a) the model can exploit the existing relationships, re-scale the node weights, and influence the way the neighborhood nodes’ representations are aggregated in the KG subgraph, b) It potentially recovers the missing edges in KG that are needed for reasoning. Moreover, as a byproduct, our model improves handling the negative questions due to considering the relevance between the question node and the graph entities. Our proposed approach shows competitive performance on two QA benchmarks, CommonsenseQA and OpenbookQA, compared to the state-of-the-art published results. 
    more » « less
  3. Graph rationales are representative subgraph structures that best explain and support the graph neural network (GNN) predictions. Graph rationalization involves the joint identification of these subgraphs during GNN training, resulting in improved interpretability and generalization. GNN is widely used for node-level tasks such as paper classification and graph-level tasks such as molecular property prediction. However, on both levels, little attention has been given to GNN rationalization and the lack of training examples makes it difficult to identify the optimal graph rationales. In this work, we address the problem by proposing a unified data augmentation framework with two novel operations on environment subgraphs to rationalize GNN prediction. We define the environment subgraph as the remaining subgraph after rationale identification and separation. The framework efficiently performs rationale–environment separation in therepresentation spacefor a node’s neighborhood graph or a graph’s complete structure to avoid the high complexity of explicit graph decoding and encoding. We conduct experiments on 17 datasets spanning node classification, graph classification, and graph regression. Results demonstrate that our framework is effective and efficient in rationalizing and enhancing GNNs for different levels of tasks on graphs. 
    more » « less
  4. Learning discriminative node representations benefits various downstream tasks in graph analysis such as community detection and node classification. Existing graph representation learning methods (e.g., based on random walk and contrastive learning) are limited to maximizing the local similarity of connected nodes. Such pair-wise learning schemes could fail to capture the global distribution of representations, since it has no explicit constraints on the global geometric properties of representation space. To this end, we propose Geometric Graph Representation Learning (G2R) to learn node representations in an unsupervised manner via maximizing rate reduction. In this way, G2R maps nodes in distinct groups (implicitly stored in the adjacency matrix) into different subspaces, while each subspace is compact and different subspaces are dispersedly distributed. G2R adopts a graph neural network as the encoder and maximizes the rate reduction with the adjacency matrix. Furthermore, we theoretically and empirically demonstrate that rate reduction maximization is equivalent to maximizing the principal angles between different subspaces. Experiments on real-world datasets show that G2R outperforms various baselines on node classification and community detection tasks. 
    more » « less
  5. Graph few-shot learning is of great importance among various graph learning tasks. Under the few-shot scenario, models are often required to conduct classification given limited labeled samples. Existing graph few-shot learning methods typically leverage Graph Neural Networks (GNNs) and perform classification across a series of meta-tasks. Nevertheless, these methods generally rely on the original graph (i.e., the graph that the meta-task is sampled from) to learn node representations. Consequently, the learned representations for the same nodes are identical in all meta-tasks. Since the class sets are different across meta-tasks, node representations should be task-specific to promote classification performance. Therefore, to adaptively learn node representations across meta-tasks, we propose a novel framework that learns a task-specific structure for each meta-task. To handle the variety of nodes across meta-tasks, we extract relevant nodes and learn task-specific structures based on node influence and mutual information. In this way, we can learn node representations with the task-specific structure tailored for each meta-task. We further conduct extensive experiments on five node classification datasets under both single- and multiple-graph settings to validate the superiority of our framework over the state-of-the-art baselines. 
    more » « less