skip to main content


Title: Graph Sanitation with Application to Node Classification
The past decades have witnessed the prosperity of graph mining, with a multitude of sophisticated models and algorithms designed for various mining tasks, such as ranking, classification, clustering and anomaly detection. Generally speaking, the vast majority of the existing works aim to answer the following question, that is, given a graph, what is the best way to mine it? In this paper, we introduce the graph sanitation problem, to an- swer an orthogonal question. That is, given a mining task and an initial graph, what is the best way to improve the initially provided graph? By learning a better graph as part of the input of the mining model, it is expected to benefit graph mining in a variety of settings, ranging from denoising, imputation to defense. We formulate the graph sanitation problem as a bilevel optimization problem, and fur- ther instantiate it by semi-supervised node classification, together with an effective solver named GaSoliNe. Extensive experimental results demonstrate that the proposed method is (1) broadly appli- cable with respect to various graph neural network models and flexible graph modification strategies, (2) effective in improving the node classification accuracy on both the original and contaminated graphs in various perturbation scenarios. In particular, it brings up to 25% performance improvement over the existing robust graph neural network methods.  more » « less
Award ID(s):
1947135 2134079
NSF-PAR ID:
10332504
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Graph Sanitation with Application to Node Classification
Page Range / eLocation ID:
1136 to 1147
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-sourced networks naturally appear in many application domains, ranging from bioinformatics, social networks, neuroscience to management. Although state-of-the-art offers rich models and algorithms to find various patterns when input networks are given, it has largely remained nascent on how vulnerable the mining results are due to the adversarial attacks. In this paper, we address the problem of attacking multi-network mining through the way of deliberately perturbing the networks to alter the mining results. The key idea of the proposed method (ADMIRING) is effective influence functions on the Sylvester equation defined over the input networks, which plays a central and unifying role in various multi-network mining tasks. The proposed algorithms bear two main advantages, including (1) effectiveness, being able to accurately quantify the rate of change of the mining results in response to attacks; and (2) generality, being applicable to a variety of multi-network mining tasks ( e.g., graph kernel, network alignment, cross-network node similarity) with different attacking strategies (e.g., edge/node removal, attribute alteration). 
    more » « less
  2. Graph few-shot learning is of great importance among various graph learning tasks. Under the few-shot scenario, models are often required to conduct classification given limited labeled samples. Existing graph few-shot learning methods typically leverage Graph Neural Networks (GNNs) and perform classification across a series of meta-tasks. Nevertheless, these methods generally rely on the original graph (i.e., the graph that the meta-task is sampled from) to learn node representations. Consequently, the learned representations for the same nodes are identical in all meta-tasks. Since the class sets are different across meta-tasks, node representations should be task-specific to promote classification performance. Therefore, to adaptively learn node representations across meta-tasks, we propose a novel framework that learns a task-specific structure for each meta-task. To handle the variety of nodes across meta-tasks, we extract relevant nodes and learn task-specific structures based on node influence and mutual information. In this way, we can learn node representations with the task-specific structure tailored for each meta-task. We further conduct extensive experiments on five node classification datasets under both single- and multiple-graph settings to validate the superiority of our framework over the state-of-the-art baselines. 
    more » « less
  3. Abstract

    Given a node-attributed graph, how can we efficiently represent it with few numerical features that expressively reflect its topology and attribute information? We proposeA-DOGE, for attributed DOS-based graph embedding, based on density of states (DOS, a.k.a. spectral density) to tackle this problem.A-DOGEis designed to fulfill a long desiderata of desirable characteristics. Most notably, it capitalizes on efficient approximation algorithms for DOS, that we extend to blend in node labels and attributes for the first time, making it fast and scalable for large attributed graphs and graph databases. Being based on the entire eigenspectrum of a graph,A-DOGEcan capture structural and attribute properties at multiple (“glocal”) scales. Moreover, it is unsupervised (i.e., agnostic to any specific objective) and lends itself to various interpretations, which makes it suitable for exploratory graph mining tasks. Finally, it processes each graph independent of others, making it amenable for streaming settings as well as parallelization. Through extensive experiments, we show the efficacy and efficiency ofA-DOGEon exploratory graph analysis and graph classification tasks, where it significantly outperforms unsupervised baselines and achieves competitive performance with modern supervised GNNs, while achieving the best trade-off between accuracy and runtime.

     
    more » « less
  4. This work investigates the challenge of learning and reasoning for Commonsense Question Answering given an external source of knowledge in the form of a knowledge graph (KG). We propose a novel graph neural network architecture, called Dynamic Relevance Graph Network (DRGN). DRGN operates on a given KG subgraph based on the question and answers entities and uses the relevance scores between the nodes to establish new edges dynamically for learning node representations in the graph network. This explicit usage of relevance as graph edges has the following advantages, a) the model can exploit the existing relationships, re-scale the node weights, and influence the way the neighborhood nodes’ representations are aggregated in the KG subgraph, b) It potentially recovers the missing edges in KG that are needed for reasoning. Moreover, as a byproduct, our model improves handling the negative questions due to considering the relevance between the question node and the graph entities. Our proposed approach shows competitive performance on two QA benchmarks, CommonsenseQA and OpenbookQA, compared to the state-of-the-art published results. 
    more » « less
  5. Attributed subgraph matching is a powerful tool for explorative mining of large attributed networks. In many applications (e.g., network science of teams, intelligence analysis, finance informatics), the user might not know what exactly s/he is looking for, and thus require the user to constantly revise the initial query graph based on what s/he finds from the current matching results. A major bottleneck in such an interactive matching scenario is the efficiency, as simply rerunning the matching algorithm on the revised query graph is computationally prohibitive. In this paper, we propose a family of effective and efficient algorithms (FIRST) to support interactive attributed subgraph matching. There are two key ideas behind the proposed methods. The first is to recast the attributed subgraph matching problem as a cross-network node similarity problem, whose major computation lies in solving a Sylvester equation for the query graph and the underlying data graph. The second key idea is to explore the smoothness between the initial and revised queries, which allows us to solve the new/updated Sylvester equation incrementally, without re-solving it from scratch. Experimental results show that our method can achieve (1) up to 16x speed-up when applying on networks with 6M$+$ nodes; (2) preserving more than 90% accuracy compared with existing methods; and (3) scales linearly with respect to the size of the data graph. 
    more » « less