We propose an adversarial learning framework to capture the evolving game between a regulator who develops tools to detect market manipulation and a manipulator who obfuscates actions to evade detection. The model includes three main parts: (1) a generator that learns to adapt original manipulation order streams to resemble trading patterns of a normal trader while preserving the manipulation intent; (2) a discriminator that differentiates the adversarially adapted manipulation order streams from normal trading activities; and (3) an agent-based simulator that evaluates the manipulation effect of adapted outputs. We conduct experiments on simulated order streams associated with a manipulator and a market-making agent respectively. We show examples of adapted manipulation order streams that mimic a specified market maker's quoting patterns and appear qualitatively different from the original manipulation strategy we implemented in the simulator. These results demonstrate the possibility of automatically generating a diverse set of (unseen) manipulation strategies that can facilitate the training of more robust detection algorithms.
- Award ID(s):
- 1741190
- Publication Date:
- NSF-PAR ID:
- 10185932
- Journal Name:
- 29th International Joint Conference on Artificial Intelligence
- Page Range or eLocation-ID:
- 4626 to 4632
- Sponsoring Org:
- National Science Foundation
More Like this
-
We present an agent-based model of manipulating prices in financial markets through spoofing: submitting spurious orders to mislead traders who learn from the order book. Our model captures a complex market environment for a single security, whose common value is given by a dynamic fundamental time series. Agents trade through a limit-order book, based on their private values and noisy observations of the fundamental. We consider background agents following two types of trading strategies: the non-spoofable zero intelligence (ZI) that ignores the order book and the manipulable heuristic belief learning (HBL) that exploits the order book to predict price outcomes.more »
-
We study learning-based trading strategies in markets where prices can be manipulated through spoofing: the practice of submitting spurious orders to mislead traders who use market information. To reduce the vulnerability of learning traders to such manipulation, we propose two variations based on the standard heuristic belief learning (HBL) trading strategy, which learns transaction probabilities from market activities observed in an order book. The first variation selectively ignores orders at certain price levels, particularly where spoof orders are likely to be placed. The second considers the full order book, but adjusts its limit order price to correct for bias inmore »
-
We study learning-based trading strategies in markets where prices can be manipulated through spoofing: the practice of submitting spurious orders to mislead traders who use market information. To reduce the vulnerability of learning traders to such manipulation, we propose two variations based on the standard heuristic belief learning (HBL) trading strategy, which learns transaction probabilities from market activities observed in an order book. The first variation selectively ignores orders at certain price levels, particularly where spoof orders are likely to be placed. The second considers the full order book, but adjusts its limit order price to correct for bias inmore »
-
We introduce ABIDES, an open source Agent-Based Interactive Discrete Event Simulation environment. ABIDES is designed from the ground up to support agent-based research in market applications. While proprietary simulations are available within trading firms, there are no broadly available high-fidelity market simulation environments. ABIDES enables the simulation of tens of thousands of trading agents interacting with an exchange agent to facilitate transactions. It supports configurable pairwise noisy network latency between each individual agent as well as the exchange. Our simulator's message-based design is modeled after NASDAQ's published equity trading protocols ITCH and OUCH. We introduce the design of the simulatormore »
-
This design-focused practice paper presents a case study describing how a training program developed for academic contexts was adapted for use with engineers working in industry. The underlying curriculum is from the NSF-funded CyberAmbassadors program, which developed training in communication, teamwork and leadership skills for participants from academic and research settings. For the case study described here, one module from the CyberAmbassadors project was adapted for engineers working in private industry: “Teaming Up: Effective Group and Meeting Management.” The key objectives were to increase knowledge and practical skills within the company’s engineering organization, focusing specifically on time management as itmore »