skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling the annual cycle of daily Antarctic sea ice extent
Abstract. The total Antarctic sea ice extent (SIE) experiences a distinct annual cycle, peaking in September and reaching its minimum in February. In thispaper we propose a mathematical and statistical decomposition of this temporal variation inSIE. Each component is interpretable and, when combined,gives a complete picture of the variation in the sea ice. We consider timescales varying from the instantaneous and not previously defined to themulti-decadal curvilinear trend, the longest. Because our representation is daily, these timescales of variability give precise information about thetiming and rates of advance and retreat of the ice and may be used to diagnose physical contributors to variability in the sea ice. We definea number of annual cycles each capturing different components of variation, especially the yearly amplitude and phase that are major contributors toSIE variation. Using daily sea ice concentration data, we show that our proposed invariant annual cycle explains 29 % more of the variation indaily SIE than the traditional method. The proposed annual cycle that incorporates amplitude and phase variation explains 77 % more variation thanthe traditional method. The variation in phase explains more of the variability in SIE than the amplitude. Using our methodology, we show that theanomalous decay of sea ice in 2016 was associated largely with a change of phase rather than amplitude. We show that the long term trend inAntarctic sea ice extent is strongly curvilinear and the reported positive linear trend is small and dependent strongly on a positive trend thatbegan around 2011 and continued until 2016.  more » « less
Award ID(s):
1745089
PAR ID:
10185986
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Cryosphere
Volume:
14
Issue:
7
ISSN:
1994-0424
Page Range / eLocation ID:
2159 to 2172
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding the variability of Antarctic sea ice is an ongoing challenge given the limitations of observed data. Coupled climate model simulations present the opportunity to examine this variability in Antarctic sea ice. Here, the daily sea ice extent simulated by the newly released National Center for Atmospheric Research (NCAR) Community Eart h System Model Version 2 (CESM2) for the historical period (1979–2014) is compared to the satellite‐observed daily sea ice extent for the same period. The comparisons are made using a newly developed suite of statistical metrics that estimates the variability of the sea ice extent on timescales ranging from the long‐term decadal to the short term, intraday scales. Assessed are the annual cycle, trend, day‐to‐day change, and the volatility, a new statistic that estimates the variability at the daily scale. Results show that the trend in observed daily sea ice is dominated by subdecadal variability with a weak positive linear trend superimposed. The CESM2 simulates comparable subdecadal variability but with a strong negative linear trend superimposed. The CESM2's annual cycle is similar in amplitude to the observed, key differences being the timing of ice advance and retreat. The sea ice begins its advance later, reaches its maximum later and begins retreat later in the CESM2. This is confirmed by the day‐to‐day change. Apparent in all of the sea ice regions, this behavior suggests the influence of the semiannual oscillation of the circumpolar trough. The volatility, which is associated with smaller scale dynamics such as storms, is smaller in the CESM2 than observed. 
    more » « less
  2. Abstract We characterize high‐frequency variability of sea ice extent (HFVSIE) in observations and climate models. We find that HFVSIE in models is biased low with respect to observations, especially at synoptic timescales (<20 days) in the Arctic year‐round and at monthly timescales (30–60 days) in Antarctica in winter. Models show large spread in HFVSIE, especially in Antarctica. This spread is partly explained by sea ice mean‐state while model biases in sea level pressure (SLP) and wind variability do not appear to play a major role in HFVSIE spread. Extreme sea ice extent (SIE) changes are associated with SLP anomaly dipoles aligned with the sea ice edge and winds directed on‐ice (off‐ice) during SIE loss (gain) events. In observations, these events are also associated with distinct ocean wave states during the cold season, when waves are greater (smaller) and travel toward (away from) the sea ice edge during SIE loss (gain) events. 
    more » « less
  3. null (Ed.)
    Abstract Antarctic sea ice extent (SIE) has slightly increased over the satellite observational period (1979 to the present) despite global warming. Several mechanisms have been invoked to explain this trend, such as changes in winds, precipitation, or ocean stratification, yet there is no widespread consensus. Additionally, fully coupled Earth system models run under historic and anthropogenic forcing generally fail to simulate positive SIE trends over this time period. In this work, we quantify the role of winds and Southern Ocean SSTs on sea ice trends and variability with an Earth system model run under historic and anthropogenic forcing that nudges winds over the polar regions and Southern Ocean SSTs north of the sea ice to observations from 1979 to 2018. Simulations with nudged winds alone capture the observed interannual variability in SIE and the observed long-term trends from the early 1990s onward, yet for the longer 1979–2018 period they simulate a negative SIE trend, in part due to faster-than-observed warming at the global and hemispheric scale in the model. Simulations with both nudged winds and SSTs show no significant SIE trends over 1979–2018, in agreement with observations. At the regional scale, simulated sea ice shows higher skill compared to the pan-Antarctic scale both in capturing trends and interannual variability in all nudged simulations. We additionally find negligible impact of the initial conditions in 1979 on long-term trends. 
    more » « less
  4. Abstract Observations show predictive skill of the minimum sea ice extent (Min SIE) from late winter anomalous offshore ice drift along the Eurasian coastline, leading to local ice thickness anomalies at the onset of the melt season—a signal then amplified by the ice–albedo feedback. We assess whether the observed seasonal predictability of September sea ice extent (Sept SIE) from Fram Strait Ice Area Export (FSIAE; a proxy for Eurasian coastal divergence) is present in global climate model (GCM) large ensembles, namely the CESM2-LE, GISS-E2.1-G, FLOR-LE, CNRM-CM6-1, and CanESM5. All models show distinct periods where winter FSIAE anomalies are negatively correlated with the May sea ice thickness (May SIT) anomalies along the Eurasian coastline, and the following Sept Arctic SIE, as in observations. Counterintuitively, several models show occasional periods where winter FSIAE anomalies are positively correlated with the following Sept SIE anomalies when the mean ice thickness is large, or late in the simulation when the sea ice is thin, and/or when internal variability increases. More important, periods with weak correlation between winter FSIAE and the following Sept SIE dominate, suggesting that summer melt processes generally dominate over late-winter preconditioning and May SIT anomalies. In general, we find that the coupling between the winter FSIAE and ice thickness anomalies along the Eurasian coastline at the onset of the melt season is a ubiquitous feature of GCMs and that the relationship with the following Sept SIE is dependent on the mean Arctic sea ice thickness. 
    more » « less
  5. Arctic sea ice extent (SIE) has drawn increasing attention from scientists in recent years because of its fast decline in the Boreal summer and early fall. The measurement of SIE is derived from remote sensing data and is both a lagged and leading indicator of climate change. To characterize at a local level the decline in SIE, we use remote-sensing data at 25 km resolution to fit a spatio-temporal logistic autoregressive model of the sea-ice evolution in the Arctic region. The model incorporates last year’s ice/water binary observations at nearby grid cells in an autoregressive manner with autoregressive coefficients that vary both in space and time. Using the model-based estimates of ice/water probabilities in the Arctic region, we propose several graphical summaries to visualize the spatio-temporal changes in Arctic sea ice beyond what can be visualized with the single time series of SIE. In ever-higher latitude bands, we observe a consistently declining temporal trend of sea ice in the early fall. We also observe a clear decline in and contraction of the sea ice’s distribution between 70∘N–75∘N, and of most concern is that this may reflect the future behavior of sea ice at ever-higher latitudes under climate change. 
    more » « less