skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High‐Frequency Sea Ice Variability in Observations and Models
Abstract We characterize high‐frequency variability of sea ice extent (HFVSIE) in observations and climate models. We find that HFVSIE in models is biased low with respect to observations, especially at synoptic timescales (<20 days) in the Arctic year‐round and at monthly timescales (30–60 days) in Antarctica in winter. Models show large spread in HFVSIE, especially in Antarctica. This spread is partly explained by sea ice mean‐state while model biases in sea level pressure (SLP) and wind variability do not appear to play a major role in HFVSIE spread. Extreme sea ice extent (SIE) changes are associated with SLP anomaly dipoles aligned with the sea ice edge and winds directed on‐ice (off‐ice) during SIE loss (gain) events. In observations, these events are also associated with distinct ocean wave states during the cold season, when waves are greater (smaller) and travel toward (away from) the sea ice edge during SIE loss (gain) events.  more » « less
Award ID(s):
1643431 1643436
PAR ID:
10374895
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
14
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The predictability of sea ice during extreme sea ice loss events on subseasonal (daily to weekly) time scales is explored in dynamical forecast models. These extreme sea ice loss events (defined as the 5th percentile of the 5-day change in sea ice extent) exhibit substantial regional and seasonal variability; in the central Arctic Ocean basin, most subseasonal rapid ice loss occurs in the summer, but in the marginal seas rapid sea ice loss occurs year-round. Dynamical forecast models are largely able to capture the seasonality of these extreme sea ice loss events. In most regions in the summertime, sea ice forecast skill is lower on extreme sea ice loss days than on nonextreme days, despite evidence that links these extreme events to large-scale atmospheric patterns; in the wintertime, the difference between extreme and nonextreme days is less pronounced. In a damped anomaly forecast benchmark estimate, the forecast error remains high following extreme sea ice loss events and does not return to typical error levels for many weeks; this signal is less robust in the dynamical forecast models but still present. Overall, these results suggest that sea ice forecast skill is generally lower during and after extreme sea ice loss events and also that, while dynamical forecast models are capable of simulating extreme sea ice loss events with similar characteristics to what we observe, forecast skill from dynamical models is limited by biases in mean state and variability and errors in the initialization. Significance Statement We studied weather model forecasts of changes in Arctic sea ice extent on day-to-day time scales in different regions and seasons. We were especially interested in extreme sea ice loss days, or days in which sea ice melts very quickly or is reduced due to diverging forces such as winds, ocean currents, and waves. We find that forecast models generally capture the observed timing of extreme sea ice loss days. We also find that forecasts of sea ice extent are worse on extreme sea ice loss days compared to typical days, and that forecast errors remain elevated following extreme sea ice loss events. 
    more » « less
  2. Abstract The variability of Arctic sea ice extent (SIE) on interannual and multidecadal time scales is examined in 29 models with historical forcing participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6) and in twentieth-century sea ice reconstructions. Results show that during the historical period with low external forcing (1850–1919), CMIP6 models display relatively good agreement in their representation of interannual sea ice variability (IVSIE) but exhibit pronounced intermodel spread in multidecadal sea ice variability (MVSIE), which is overestimated with respect to sea ice reconstructions and is dominated by model uncertainty in sea ice simulation in the subpolar North Atlantic. We find that this is associated with differences in models’ sensitivity to Northern Hemispheric sea surface temperatures (SSTs). Additionally, we show that while CMIP6 models are generally capable of simulating multidecadal changes in Arctic sea ice from the mid-twentieth century to present day, they tend to underestimate the observed sea ice decline during the early twentieth-century warming (ETCW; 1915–45). These results suggest the need for an improved characterization of the sea ice response to multidecadal climate variability in order to address the sources of model bias and reduce the uncertainty in future projections arising from intermodel spread. Significance StatementThe credibility of Arctic sea ice predictions depends on whether climate models are capable of reproducing changes in the past climate, including patterns of sea ice variability which can mask or amplify the response to global warming. This study aims to better understand how latest-generation global climate models simulate interannual and multidecadal variability of Arctic sea ice relative to available observations. We find that models differ in their representation of multidecadal sea ice variability, which is overall larger than in observations. Additionally, models underestimate the sea ice decline during the period of observed warming between 1915 and 1945. Our results suggest that, to achieve better predictions of Arctic sea ice, the realism of low-frequency sea ice variability in models should be improved. 
    more » « less
  3. Abstract. The total Antarctic sea ice extent (SIE) experiences a distinct annual cycle, peaking in September and reaching its minimum in February. In thispaper we propose a mathematical and statistical decomposition of this temporal variation inSIE. Each component is interpretable and, when combined,gives a complete picture of the variation in the sea ice. We consider timescales varying from the instantaneous and not previously defined to themulti-decadal curvilinear trend, the longest. Because our representation is daily, these timescales of variability give precise information about thetiming and rates of advance and retreat of the ice and may be used to diagnose physical contributors to variability in the sea ice. We definea number of annual cycles each capturing different components of variation, especially the yearly amplitude and phase that are major contributors toSIE variation. Using daily sea ice concentration data, we show that our proposed invariant annual cycle explains 29 % more of the variation indaily SIE than the traditional method. The proposed annual cycle that incorporates amplitude and phase variation explains 77 % more variation thanthe traditional method. The variation in phase explains more of the variability in SIE than the amplitude. Using our methodology, we show that theanomalous decay of sea ice in 2016 was associated largely with a change of phase rather than amplitude. We show that the long term trend inAntarctic sea ice extent is strongly curvilinear and the reported positive linear trend is small and dependent strongly on a positive trend thatbegan around 2011 and continued until 2016. 
    more » « less
  4. Abstract Observations show predictive skill of the minimum sea ice extent (Min SIE) from late winter anomalous offshore ice drift along the Eurasian coastline, leading to local ice thickness anomalies at the onset of the melt season—a signal then amplified by the ice–albedo feedback. We assess whether the observed seasonal predictability of September sea ice extent (Sept SIE) from Fram Strait Ice Area Export (FSIAE; a proxy for Eurasian coastal divergence) is present in global climate model (GCM) large ensembles, namely the CESM2-LE, GISS-E2.1-G, FLOR-LE, CNRM-CM6-1, and CanESM5. All models show distinct periods where winter FSIAE anomalies are negatively correlated with the May sea ice thickness (May SIT) anomalies along the Eurasian coastline, and the following Sept Arctic SIE, as in observations. Counterintuitively, several models show occasional periods where winter FSIAE anomalies are positively correlated with the following Sept SIE anomalies when the mean ice thickness is large, or late in the simulation when the sea ice is thin, and/or when internal variability increases. More important, periods with weak correlation between winter FSIAE and the following Sept SIE dominate, suggesting that summer melt processes generally dominate over late-winter preconditioning and May SIT anomalies. In general, we find that the coupling between the winter FSIAE and ice thickness anomalies along the Eurasian coastline at the onset of the melt season is a ubiquitous feature of GCMs and that the relationship with the following Sept SIE is dependent on the mean Arctic sea ice thickness. 
    more » « less
  5. null (Ed.)
    Abstract Antarctic sea ice extent (SIE) has slightly increased over the satellite observational period (1979 to the present) despite global warming. Several mechanisms have been invoked to explain this trend, such as changes in winds, precipitation, or ocean stratification, yet there is no widespread consensus. Additionally, fully coupled Earth system models run under historic and anthropogenic forcing generally fail to simulate positive SIE trends over this time period. In this work, we quantify the role of winds and Southern Ocean SSTs on sea ice trends and variability with an Earth system model run under historic and anthropogenic forcing that nudges winds over the polar regions and Southern Ocean SSTs north of the sea ice to observations from 1979 to 2018. Simulations with nudged winds alone capture the observed interannual variability in SIE and the observed long-term trends from the early 1990s onward, yet for the longer 1979–2018 period they simulate a negative SIE trend, in part due to faster-than-observed warming at the global and hemispheric scale in the model. Simulations with both nudged winds and SSTs show no significant SIE trends over 1979–2018, in agreement with observations. At the regional scale, simulated sea ice shows higher skill compared to the pan-Antarctic scale both in capturing trends and interannual variability in all nudged simulations. We additionally find negligible impact of the initial conditions in 1979 on long-term trends. 
    more » « less