Abstract. The total Antarctic sea ice extent (SIE) experiences a distinct annual cycle, peaking in September and reaching its minimum in February. In thispaper we propose a mathematical and statistical decomposition of this temporal variation inSIE. Each component is interpretable and, when combined,gives a complete picture of the variation in the sea ice. We consider timescales varying from the instantaneous and not previously defined to themulti-decadal curvilinear trend, the longest. Because our representation is daily, these timescales of variability give precise information about thetiming and rates of advance and retreat of the ice and may be used to diagnose physical contributors to variability in the sea ice. We definea number of annual cycles each capturing different components of variation, especially the yearly amplitude and phase that are major contributors toSIE variation. Using daily sea ice concentration data, we show that our proposed invariant annual cycle explains 29 % more of the variation indaily SIE than the traditional method. The proposed annual cycle that incorporates amplitude and phase variation explains 77 % more variation thanthe traditional method. The variation in phase explains more of the variability in SIE than the amplitude. Using our methodology, we show that theanomalous decay of sea ice in 2016 was associated largely with a change of phase rather than amplitude. We show that the long term trend inAntarctic sea ice extent is strongly curvilinear and the reported positive linear trend is small and dependent strongly on a positive trend thatbegan around 2011 and continued until 2016. 
                        more » 
                        « less   
                    
                            
                            An Assessment of the Temporal Variability in the Annual Cycle of Daily Antarctic Sea Ice in the NCAR Community Earth System Model, Version 2: A Comparison of the Historical Runs With Observations
                        
                    
    
            Abstract Understanding the variability of Antarctic sea ice is an ongoing challenge given the limitations of observed data. Coupled climate model simulations present the opportunity to examine this variability in Antarctic sea ice. Here, the daily sea ice extent simulated by the newly released National Center for Atmospheric Research (NCAR) Community Eart h System Model Version 2 (CESM2) for the historical period (1979–2014) is compared to the satellite‐observed daily sea ice extent for the same period. The comparisons are made using a newly developed suite of statistical metrics that estimates the variability of the sea ice extent on timescales ranging from the long‐term decadal to the short term, intraday scales. Assessed are the annual cycle, trend, day‐to‐day change, and the volatility, a new statistic that estimates the variability at the daily scale. Results show that the trend in observed daily sea ice is dominated by subdecadal variability with a weak positive linear trend superimposed. The CESM2 simulates comparable subdecadal variability but with a strong negative linear trend superimposed. The CESM2's annual cycle is similar in amplitude to the observed, key differences being the timing of ice advance and retreat. The sea ice begins its advance later, reaches its maximum later and begins retreat later in the CESM2. This is confirmed by the day‐to‐day change. Apparent in all of the sea ice regions, this behavior suggests the influence of the semiannual oscillation of the circumpolar trough. The volatility, which is associated with smaller scale dynamics such as storms, is smaller in the CESM2 than observed. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10453157
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 125
- Issue:
- 11
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We assess Antarctic sea ice climatology and variability in version 2 of the Community Earth System Model (CESM2), and compare it to that in the older CESM1 and (where appropriate) real-world observations. In CESM2, Antarctic sea ice is thinner and less extensive than in CESM1, though sea ice area is still approximately 1 million km2 greater in CESM2 than in present-day observations. Though there is less Antarctic sea ice in CESM2, the annual cycle of ice growth and melt is more vigorous in CESM2 than in CESM1. A new mushy-layer thermodynamics formulation implemented in the latest version of the Community Ice Code (CICE) in CESM2 accounts for both greater frazil ice forma- tion in coastal polynyas and more snow-to-ice conversion near the edge of the ice pack in the new model. Greater winter ice divergence in CESM2 (relative to CESM1) is due to stronger stationary wave activity and greater wind stress curl over the ice pack. Greater wind stress curl, in turn, drives more warm water upwelling under the ice pack, thinning it and decreasing its extent. Overall, differences between Antarctic sea ice in CESM2 and CESM1 arise due to both differences in their sea ice thermodynamics formulations, and differences in their coupled atmosphere-ocean states.more » « less
- 
            Abstract Arctic and Antarctic sea ice has undergone significant and rapid change with the changing climate. Here, we present preindustrial and historical results from the newly released Community Earth System Model Version 2 (CESM2) to assess the Arctic and Antarctic sea ice. Two configurations of the CESM2 are available that differ only in their atmospheric model top and the inclusion of comprehensive atmospheric chemistry, including prognostic aerosols. The CESM2 configuration with comprehensive atmospheric chemistry has significantly thicker Arctic sea ice year‐round and better captures decreasing trends in sea ice extent and volume over the satellite period. In the Antarctic, both CESM configurations have similar mean state ice extent and volume, but the ice extent trends are opposite to satellite observations. We find that differences in the Arctic sea ice between CESM2 configurations are the result of differences in liquid clouds. Over the Arctic, the CESM2 configuration without prognostic aerosol formation has fewer aerosols to form cloud condensation nuclei, leading to thinner liquid clouds. As a result, the sea ice receives much more shortwave radiation early in the melt season, driving a stronger ice albedo feedback and leading to additional sea ice loss and significantly thinner ice year‐round. The aerosols necessary for the Arctic liquid cloud formation are produced from different precursor emissions and transported to the Arctic. Thus, the main reason sea ice differs in the Arctic is the transport of cloud‐impacting aerosols into the region, while the Antarctic remains relatively pristine from extrapolar aerosol transport.more » « less
- 
            Abstract. Identifying the processes that drive the rapid climatological retreat phase of Antarctica’s annual sea-ice cycle is crucial to understanding, modelling and attributing observed trends and recent high variability in sea-ice extent, and to projecting future sea-ice conditions and impacts accurately. To date, the rapid annual retreat of Antarctic sea ice each spring–summer has been largely attributed to lateral and basal melting of ice floes, enhanced by wave-induced breakup of large floes. Here, based on observations and modelling, we propose that waves play important additional roles in generating previously-neglected surface and interior melting, by removing snow from small floes, flooding them, and pulverising them into slush. Results here show a resultant estimated reduction in albedo by 0.38–0.54, that increases melting by 0.9–5.2 cm day-1 at 60–70o S compared to a snow-covered floe of first-year ice, and depending on surface type, wave-flooding coverage, latitude and ice density. Rapid proliferation of algae within and on the high-light and high-nutrient environment of the wave-modified ice reduces the albedo by a further 0.1 to increase the melt-rate enhancement to 1.1–6.1 cm day-1. Melting is further accelerated by a wave-induced ice–albedo feedback mechanism, similar to that associated with Arctic melt ponds but involving seawater rather than freshwater. This positive feedback is strengthened by ice-algal greening. Floe thinning and weakening by wave-melting initiate additional dynamic–thermodynamic feedbacks by increasing the likelihood of both wave-flooding and flexural breakup, leading to further floe melting. Wave melting and the associated physical–biological feedbacks will likely increase in importance in a predicted stormier and warmer Southern Ocean, and will also become more prevalent in a changing Arctic. There are implications for global weather and climate, the health of the ocean and its ecosystems, fisheries, ice-shelf stability and sea-level rise, atmospheric and oceanic biogeochemistry, and human activities.more » « less
- 
            The timing of sea ice retreat and advance in Arctic coastal waters varies substantially from year to year. Various activities, ranging from marine transport to the use of sea ice as a platform for industrial activity or winter travel, are af- fected by variations in the timing of breakup and freeze-up, resulting in a need for indicators to document the regional and temporal variations in coastal areas. The primary objec- tive of this study is to use locally based metrics to construct indicators of breakup and freeze-up in the Arctic and subarc- tic coastal environment. The indicators developed here are based on daily sea ice concentrations derived from satellite passive-microwave measurements. The “day of year” indica- tors are designed to optimize value for users while building on past studies characterizing breakup and freeze-up dates in the open pack ice. Relative to indicators for broader adja- cent seas, the coastal indicators generally show later breakup at sites known to have landfast ice. The coastal indicators also show earlier freeze-up at some sites in comparison with freeze-up for broader offshore regions, likely tied to ear- lier freezing of shallow-water regions and areas affected by freshwater input from nearby streams and rivers. A factor analysis performed to synthesize the local indicator varia- tions shows that the local breakup and freeze-up indicators have greater spatial variability than corresponding metrics based on regional ice coverage. However, the trends towards earlier breakup and later freeze-up are unmistakable over the post-1979 period in the synthesized metrics of coastal breakup and freeze-up and the corresponding regional ice coverage. The findings imply that locally defined indicators can serve as key links between pan-Arctic or global indica- tors such as sea ice extent or volume and local uses of sea ice, with the potential to inform community-scale adaptation and response.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
