skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrated energy-water-land nexus planning to guide national policy: an example from Uruguay
Abstract Despite broad consensus on the benefits of a nexus approach to multi-sector planning, actual implementation in government and other decision-making institutions is still rare. This study presents an approach to conducting integrated energy-water-land (EWL) planning, using Uruguay as an example. This stakeholder-driven study focuses on assessing the EWL nexus implications of actual planned policies aimed at strengthening three of Uruguay’s key exports (beef, soy, and rice), which account for more than 40% of total national export revenue. Five scenarios are analyzed in the study: a reference scenario, a climate impacts scenario, and three policy scenarios. The three policy scenarios include measures such as increasing the intensity of beef production while simultaneously decreasing emissions, increasing irrigated soybean production, and improving rice yields. This study supplements previous sector-specific planning efforts in Uruguay by conducting the first stakeholder-driven integrated multi-sector assessment of planned policies in Uruguay using a suite of integrated modeling tools. Key insights from the study are: as compared to a reference scenario, improving beef productivity could lead to cropland expansion (+30%) and significant indirect increases in water requirements (+20%); improving rice yields could lead to increases in total emissions (+3%), which may partially offset emissions reductions from other policies; expanding irrigated soy could have the least EWL impacts amongst the policies studied; and climate-driven changes could have significantly less impact on EWL systems as compared to human actions. The generalizable insights derived from this analysis are readily applicable to other countries facing similar multi-sector planning challenges. In particular, the study’s results reinforce the fact that policies often have multi-sector consequences, and thus policies can impact one another’s efficacy. Thus, policy design and implementation can benefit from coordination across sectors and decision-making institutions.  more » « less
Award ID(s):
1855982
PAR ID:
10186091
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
15
Issue:
9
ISSN:
1748-9326
Page Range / eLocation ID:
Article No. 094014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This study seeks to understand how Argentina's energy, water, and land (EWL) systems will co‐evolve under a representative array of human and earth system influences, including socioeconomic change, climate change, and climate policy. To capture Argentina's sub‐national EWL dynamics in the context of global change, we couple the Global Change Analysis Model with a suite of consistent, gridded sectoral downscaling models to explore multiple stakeholder‐engaged scenarios. Across scenarios, Argentina has the economic opportunity to use its vast land resources to satisfy growing domestic and international demand for crops, such as oil (e.g., soy) and biomass. The human (rather than earth) system produces the most dominant changes in mid‐century EWL resource use. A Reference scenario characterized by modest socioeconomic growth projects a 40% increase in Argentina's agricultural production by 2050 (relative to 2020) by using 50,000 km2of additional cropland and 40% more water. A Climate Policy scenario designed to achieve net‐zero carbon emissions globally shortly after mid‐century projects that Argentina could use 100,000 km2of additional land (and 65% more water) to grow biomass and other crops. The burden of navigating these national opportunities and challenges could fall disproportionately on a subset of Argentina's river basins. The Colorado and Negro basins could experience moderate‐to‐severe water scarcity as they simultaneously navigate substantial irrigated crop demand growth and climate‐induced declines in natural water availability. Argentina serves as a generalizable testbed to demonstrate that multi‐scale EWL planning challenges can be identified and managed more effectively via integrated analysis of coupled human‐earth systems. 
    more » « less
  2. null (Ed.)
    Abstract Integrated energy-water-land (EWL) planning promotes synergies and avoids conflicts in ways that sector-specific planning approaches cannot. Many important decisions that influence emerging EWL nexus issues are implemented at regional (e.g., large river basin, electricity grid) and sub-regional (e.g., small river basin, irrigation district) scales. However, actual implementation of integrated planning at these scales has been limited. Simply collecting and visualizing data and interconnections across multiple sectors and sub-regions in a single modeling platform is a unique endeavor in many regions. This study introduces and applies a novel approach to linking together multiple sub-regions in a single platform to characterize and visualize EWL resource use, EWL system linkages within and among sub-regions, and the EWL nexus implications of future policies and investments. This integrated planning methodology is applied in the water-stressed Colorado River Basin in Argentina, which is facing increasing demands for agricultural and fossil fuel commodities. Guided by stakeholders, this study seeks to inform basin planning activities by characterizing and visualizing (1) the basin’s current state of EWL resources, (2) the linkages between sectors within and among basin sub-regions, and (3) the EWL nexus implications of planned future agricultural development activities. Results show that water scarcity, driven in part by human demands that have historically reached 60% of total surface water supply, poses a substantial constraint to economic development in the basin. The Colorado basin has the potential to serve as a testbed for crafting novel and generalizable sub-regional EWL planning approaches capable of informing the EWL planning dialogue globally. 
    more » « less
  3. While stakeholder-driven approaches have been increasingly used in scenario modeling, previous studies have mostly focused on the qualitative elements, e.g., narratives and policy documents, from the stakeholders, but lack engagement of stakeholders with quantitative inputs. In this study, we conducted workshops with a stakeholder group to integrate the participatory mapping of future policies in the simulation, and to compare the environmental impacts after including the participatory mapping. A land system change model named CLUMondo was used to simulate four scenarios, i.e., Business-As-Usual (BAU), Destroying Resources in Owyhee (DRO), Ecological Conservation (EC), and Managed Recreation (MR), in Owyhee County, Idaho, United States. The InVEST models were used to assess water yield, soil erosion, and wildlife habitat under the four scenarios. The results show that the DRO scenario would decrease shrubland and increased grassland, thus leading to less water yield, more soil erosion, and deteriorated wildlife habitat anticipated through to 2050. On the contrary, the EC and MR scenarios reverse the trend and would improve these ecosystem services over the same time horizon. The stakeholder-driven policies appear to influence the spatial distribution of the land system and ecosystem services. The results help to reach a nuanced understanding of the stakeholder-driven scenarios and highlight the importance of engaging stakeholders in scenario modeling and environmental impact analysis. 
    more » « less
  4. In this work, we compare the air quality benefits of a variety of future policy scenarios geared towards controlling EGU (electricity generating units) emissions between the present-day conditions and 2050. While these policies are motivated by reducing CO2 emissions, they also yield significant co-benefits for criteria pollutants, such as ozone and PM2.5. An integrated set of clean energy policies were examined to assess the time-varying costs and benefits of a range of decarbonization strategies, including business as usual and the Affordable Clean Energy plan, with a primary focus on others that look to achieve very low, if not zero, CO2 emissions from the EGU sector by 2050. Benefits assessed include mitigation of greenhouse gas emissions as well as air quality co-benefits. In this introductory work, we describe the potential air quality changes from various clean air policies, to set the stage for upcoming work looking at health and monetized benefits. Emission changes for key pollutants are forecast using the Integrated Planning Model (IPM), which are then transformed into emission inputs for the Community Multiscale Air Quality Model (CMAQ). For all primary scenarios considered that achieve large greenhouse gas decreases, significant reductions in ozone and PM are realized, mainly in the eastern US, and all policies produce air quality benefits. 
    more » « less
  5. Given the increasing occurrence of high-impact low-probability (HILP) contingencies in existing power systems, strengthening the resilience of these systems has become of paramount importance. Enhancing the resilience of power systems is not solely a technical issue but also a socio-economic and policy concern. Therefore, improving the performance of power systems greatly relies on the guidance provided by energy policies. While the decarbonization response, supported by these policies to mitigate climate change, influences the adoption of energy technologies, its impact on the resilience of the system remains uncertain. To uncover the interactions between technologies, policies, and economics concerning power systems resilience, this study focuses on constructing resilience-oriented networked microgrid systems. It develops a two-stage stochastic programming model by integrating a method for selecting power outage scenarios identified by users, in the presence of emissions policies. The results confirm the contributions of integrated systems in enhancing resilience, but they also reveal that low-carbon emissions policies play an inhibiting role by increasing the financial costs associated with resilience planning and operations. Nevertheless, a 30% emissions reduction threshold can still be achieved from the integrated network, facilitating the dual benefits of maximizing emissions reduction and minimizing the burden of emissions taxes. The study's contributions are threefold: firstly, it incorporates techno-economic incentives and regulations simultaneously; secondly, it quantifies the unintended consequences of policies on resilience; and thirdly, it provides constructive guidance for future energy policymaking, particularly in maintaining system resilience. 
    more » « less