skip to main content


Search for: All records

Award ID contains: 1855982

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Latin America and the Caribbean (LAC) region plays key roles in both meeting global agricultural demands and maintaining carbon sinks due to its abundant land and water resources. In this study we use the Global Change Analysis Model to evaluate the opportunities and challenges posed by two global‐scale drivers: agricultural market integration (i.e., reduction of trade barriers) and land‐based climate mitigation policy. We evaluate their potential individual and combined impacts on agricultural production and trade revenues across LAC's economies through mid‐century, as well as the resulting impacts on agricultural consumers and integrated land‐water‐climate systems across LAC's diverse sub‐regions. Increased global market integration results in increased agricultural production and trade revenues for many LAC economies, driven by their evolving comparative advantages. Climate mitigation measures on CO2and non‐CO2greenhouse gases increase revenues due to increased agricultural prices from land competition and emissions abatement. The combined outcomes from both drivers are complex and sometimes non‐linear, highlighting the importance of understanding the interactions between multiple drivers. Our results show that increased agricultural production and trade opportunities, from either of the two drivers, pose significant trade‐offs that require careful multi‐sectoral planning, such as emissions reduction challenges, potential loss of livestock production when pursuing land‐based climate mitigation strategies, increased consumer expenditures, and changes in land‐use or water withdrawals, resulting in deforestation or water scarcity pressures. There is considerable heterogeneity in economic and environmental outcomes across LAC sub‐regions and agricultural commodities, illustrating the value of considering outcomes at finer scales.

     
    more » « less
  2. Abstract

    Future water scarcity is a global concern with impacts across the energy, water, and land (EWL) sectors. Countries in Latin America and the Caribbean (LAC) are significant producers of agricultural goods, so disruptions resulting from water scarcity in LAC have global importance. Understanding where water scarcity in LAC could occur and what could exacerbate it is critical for strategic resource management and planning, both regionally and globally. Assessing future water scarcity in LAC is challenging given the complex interactions among the EWL sectors and the multiple uncertainties acting across spatial scales. To illuminate these dynamics, we use scenario discovery on a large ensemble representing diverse futures simulated using an integrated human‐environmental systems model. We quantify future water scarcity and its economic impacts across several physical and economic metrics. We find that future levels of reservoir storage expansion could be a significant driver of physical and economic water scarcity, highlighting the importance of strategic water infrastructure development in maintaining future water availability. Changes in crop profit are driven by both water supply and demand, emphasizing the complexity of EWL multisector dynamics. While most of LAC is poised to have abundant land and water resources available for future development, basins in Mexico and along the Pacific coast of South America experience high exposure to severe outcomes and uncertainty across outcomes for at least one metric. We find that drivers of severe scarcity vary spatially and across metrics, highlighting the region's heterogeneity and the importance of considering multiple metrics to assess water scarcity.

     
    more » « less
  3. Abstract

    Climate change mitigation will require substantial investments in renewables. In addition, climate change will affect future renewable supply and hence, power sector investment requirements. We study the implications of climate impacts on renewables for power sector investments under deep decarbonization using a global integrated assessment model. We focus on Latin American and Caribbean, an under-studied region but of great interest due to its strong role in international climate mitigation and vulnerability to climate change. We find that accounting for climate impacts on renewables results in significant additional investments ($12–114 billion by 2100 across Latin American countries) for a region with weak financial infrastructure. We also demonstrate that accounting for climate impacts only on hydropower—a primary focus of previous studies—significantly underestimates cumulative investments, particularly in scenarios with high intermittent renewable deployment. Our study underscores the importance of comprehensive analyses of climate impacts on renewables for improved energy planning.

     
    more » « less
  4. Abstract

    This study seeks to understand how Argentina's energy, water, and land (EWL) systems will co‐evolve under a representative array of human and earth system influences, including socioeconomic change, climate change, and climate policy. To capture Argentina's sub‐national EWL dynamics in the context of global change, we couple the Global Change Analysis Model with a suite of consistent, gridded sectoral downscaling models to explore multiple stakeholder‐engaged scenarios. Across scenarios, Argentina has the economic opportunity to use its vast land resources to satisfy growing domestic and international demand for crops, such as oil (e.g., soy) and biomass. The human (rather than earth) system produces the most dominant changes in mid‐century EWL resource use. A Reference scenario characterized by modest socioeconomic growth projects a 40% increase in Argentina's agricultural production by 2050 (relative to 2020) by using 50,000 km2of additional cropland and 40% more water. A Climate Policy scenario designed to achieve net‐zero carbon emissions globally shortly after mid‐century projects that Argentina could use 100,000 km2of additional land (and 65% more water) to grow biomass and other crops. The burden of navigating these national opportunities and challenges could fall disproportionately on a subset of Argentina's river basins. The Colorado and Negro basins could experience moderate‐to‐severe water scarcity as they simultaneously navigate substantial irrigated crop demand growth and climate‐induced declines in natural water availability. Argentina serves as a generalizable testbed to demonstrate that multi‐scale EWL planning challenges can be identified and managed more effectively via integrated analysis of coupled human‐earth systems.

     
    more » « less
  5. Abstract

    Despite broad consensus on the benefits of a nexus approach to multi-sector planning, actual implementation in government and other decision-making institutions is still rare. This study presents an approach to conducting integrated energy-water-land (EWL) planning, using Uruguay as an example. This stakeholder-driven study focuses on assessing the EWL nexus implications of actual planned policies aimed at strengthening three of Uruguay’s key exports (beef, soy, and rice), which account for more than 40% of total national export revenue. Five scenarios are analyzed in the study: a reference scenario, a climate impacts scenario, and three policy scenarios. The three policy scenarios include measures such as increasing the intensity of beef production while simultaneously decreasing emissions, increasing irrigated soybean production, and improving rice yields. This study supplements previous sector-specific planning efforts in Uruguay by conducting the first stakeholder-driven integrated multi-sector assessment of planned policies in Uruguay using a suite of integrated modeling tools. Key insights from the study are: as compared to a reference scenario, improving beef productivity could lead to cropland expansion (+30%) and significant indirect increases in water requirements (+20%); improving rice yields could lead to increases in total emissions (+3%), which may partially offset emissions reductions from other policies; expanding irrigated soy could have the least EWL impacts amongst the policies studied; and climate-driven changes could have significantly less impact on EWL systems as compared to human actions. The generalizable insights derived from this analysis are readily applicable to other countries facing similar multi-sector planning challenges. In particular, the study’s results reinforce the fact that policies often have multi-sector consequences, and thus policies can impact one another’s efficacy. Thus, policy design and implementation can benefit from coordination across sectors and decision-making institutions.

     
    more » « less
  6. Free, publicly-accessible full text available December 13, 2024
  7. Free, publicly-accessible full text available December 7, 2024
  8. Free, publicly-accessible full text available December 4, 2024
  9. We explore sustainable electricity system development pathways in South America’s MERCOSUR sub-region under a range of techno-economic, infrastructural, and policy forces. The MERCOSUR sub-region includes Argentina, Brazil, Chile, Uruguay, and Paraguay, which represent key electricity generation, consumption, and trade dynamics on the continent. We use a power system planning model to co-optimize investment and operations of generation, storage, and transmission facilities out to 2050. Our results show that, under business-as-usual conditions, wind and solar contribute more than half of new generation capacity by 2050, though this requires substantial expansion of natural gas-based capacity. While new hydropower appears to be less cost-competitive, the existing high capacity of hydropower provides critically important flexibility to integrate the wind and solar and to avoid further reliance on more expensive or polluting resources (e.g., natural gas). Over 90% emission cut by 2050 could be facilitated mostly by enhanced integration (predominantly after 2040) of wind, solar, and battery storage with 11%–28% additional cost, whereas enhanced expansion of hydropower reduces the cost of low-carbon transition, suggesting trade-off opportunities between saving costs and environment in selecting the clean energy resources. Achieving high emission reduction goals will also require enhanced sub-regional electricity trade, which could be mostly facilitated by existing interconnection capacities. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  10. Abstract Studies exploring long-term energy system transitions rely on resource cost-supply curves derived from estimates of renewable energy (RE) potentials to generate wind and solar power projections. However, estimates of RE potentials are characterized by large uncertainties stemming from methodological assumptions that vary across studies, including factors such as the suitability of land and the performance and configuration of technology. Based on a synthesis of modeling approaches and parameter values used in prior studies, we explore the implications of these uncertain assumptions for onshore wind and solar photovoltaic electricity generation projections globally using the Global Change Analysis Model. We show that variability in parametric assumptions related to land use (e.g. land suitability) are responsible for the most substantial uncertainty in both wind and solar generation projections. Additionally, assumptions about the average turbine installation density and turbine technology are responsible for substantial uncertainty in wind generation projections. Under scenarios that account for climate impacts on wind and solar energy, we find that these parametric uncertainties are far more significant than those emerging from differences in climate models and scenarios in a global assessment, but uncertainty surrounding climate impacts (across models and scenarios) have significant effects regionally, especially for wind. Our analysis suggests the need for studies focusing on long-term energy system transitions to account for this uncertainty. 
    more » « less