skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linking extended and plateau emissions of short gamma-ray bursts
ABSTRACT Some short gamma-ray bursts (SGRBs) show a longer lasting emission phase, called extended emission (EE) lasting $${\sim}10^{2\!-\!3}\, \rm s$$, as well as a plateau emission (PE) lasting $${\sim}10^{4\!-\!5}\, \rm s$$. Although a long-lasting activity of the central engines is a promising explanation for powering both emissions, their physical origin and their emission mechanisms are still uncertain. In this work, we study the properties of the EEs and their connection with the PEs. First, we constrain the minimal Lorentz factor Γ of the outflows powering EEs, using compactness arguments and find that the outflows should be relativistic, Γ ≳ 10. We propose a consistent scenario for the PEs, where the outflow eventually catches up with the jet responsible for the prompt emission, injecting energy into the forward shock formed by the prior jet, which naturally results in a PE. We also derive the radiation efficiency of EEs and the Lorentz factor of the outflow within our scenario for 10 well-observed SGRBs accompanied by both EE and PE. The efficiency has an average value of $${\sim}3\, {{\ \rm per\ cent}}$$ but shows a broad distribution ranging from ∼0.01 to $${\sim}100{{\ \rm per\ cent}}$$. The Lorentz factor is ∼20–30, consistent with the compactness arguments. These results suggest that EEs are produced by a slower outflow via more inefficient emission than the faster outflow that causes the prompt emission with a high radiation efficiency.  more » « less
Award ID(s):
1908689
PAR ID:
10186145
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
493
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
783 to 791
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present the hot molecular and warm ionized gas kinematics for 33 nearby (0.001 ≲ z ≲ 0.056) X-ray selected active galaxies using the H$$_2\, 2.1218\, \mu$$m and Br γ emission lines observed in the K band with the Gemini near-infrared integral field spectrograph. The observations cover the inner 0.04–2 kpc of each active galactic nucleus at spatial resolutions of 4–250 pc with a velocity resolution of σinst ≈ 20 $${\rm km\, s^{-1}}$$. We find that 31 objects (94 per cent) present a kinematically disturbed region (KDR) seen in ionized gas, while such regions are observed in hot molecular gas for 25 galaxies (76 per cent). We interpret the KDR as being due to outflows with masses of 102–107 and 100–104 M⊙ for the ionized and hot molecular gas, respectively. The ranges of mass-outflow rates ($$\dot{M}_{\rm out}$$) and kinetic power ($$\dot{E}_{\rm K}$$) of the outflows are 10−3–101 M⊙ yr−1 and ∼1037–1043 erg s−1 for the ionized gas outflows, and 10−5–10−2 M⊙ yr−1 and 1035–1039 erg s−1 for the hot molecular gas outflows. The median coupling efficiency in our sample is $$\dot{E}_{\mathrm{K}}/L_{\rm bol}\approx 1.8\times 10^{-3}$$ and the estimated momentum fluxes of the outflows suggest they are produced by radiation-pressure in low-density environment, with possible contribution from shocks. 
    more » « less
  2. ABSTRACT We study stellar-halo formation using six Milky-Way-mass galaxies in FIRE-2 cosmological zoom simulations. We find that $$5{-}40{{\ \rm per\ cent}}$$ of the outer (50–300 kpc) stellar halo in each system consists of in-situ stars that were born in outflows from the main galaxy. Outflow stars originate from gas accelerated by superbubble winds, which can be compressed, cool, and form co-moving stars. The majority of these stars remain bound to the halo and fall back with orbital properties similar to the rest of the stellar halo at z = 0. In the outer halo, outflow stars are more spatially homogeneous, metal-rich, and alpha-element-enhanced than the accreted stellar halo. At the solar location, up to $$\sim \!10 {{\ \rm per\ cent}}$$ of our kinematically identified halo stars were born in outflows; the fraction rises to as high as $$\sim \!40{{\ \rm per\ cent}}$$ for the most metal-rich local halo stars ([Fe/H] >−0.5). Such stars can be retrograde and create features similar to the recently discovered Milky Way ‘Splash’ in phase space. We conclude that the Milky Way stellar halo could contain local counterparts to stars that are observed to form in molecular outflows in distant galaxies. Searches for such a population may provide a new, near-field approach to constraining feedback and outflow physics. A stellar halo contribution from outflows is a phase-reversal of the classic halo formation scenario of Eggen, Lynden-Bell & Sandange, who suggested that halo stars formed in rapidly infalling gas clouds. Stellar outflows may be observable in direct imaging of external galaxies and could provide a source for metal-rich, extreme-velocity stars in the Milky Way. 
    more » « less
  3. ABSTRACT The association of GRB170817A with a binary neutron star (BNS) merger has revealed that BNSs produce at least a fraction of short gamma-ray bursts (SGRBs). As gravitational wave (GW) detectors push their horizons, it is important to assess coupled electromagnetic (EM)/GW probabilities and maximize observational prospects. Here, we perform BNS population synthesis calculations with the code mobse, seeding the binaries in galaxies at three representative redshifts, $$z$$ = 0.01, 0.1, and 1 of the Illustris TNG50 simulation. The binaries are evolved and their locations numerically tracked in the host galactic potentials until merger. Adopting the microphysics parameters of GRB170817A, we numerically compute the broad-band light curves of jets from BNS mergers, with the afterglow brightness dependent on the local medium density at the merger site. We perform Monte Carlo simulations of the resulting EM population assuming either a random viewing angle with respect to the jet, or a jet aligned with the orbital angular momentum of the binary, which biases the viewing angle probability for GW-triggered events. We find a gamma-ray detection probability of $$\sim\!2{{\rm per\ cent}},10{{\rm per\ cent}},\mathrm{and}\ 40{{\rm per\ cent}}$$ for BNSs at $$z$$ = 1, 0.1, and 0.01, respectively, for the random case, rising to $$\sim\!75{{\rm per\ cent}}$$ for the $$z$$ = 0.01, GW-triggered aligned case. Afterglow detection probabilities of GW-triggered BNS mergers vary in the range of $$\sim \! 0.3 \!-\! 0.5{{\rm per\ cent}}$$, with higher values for aligned jets, and are comparable across the high- and low-energy bands, unlike gamma-ray-triggered events (cosmological SGRBs) which are significantly brighter at higher energies. We further quantify observational biases with respect to host galaxy masses. 
    more » « less
  4. We report molecular gas observations of IRAS 20100-4156 and IRAS 03158+4227, two local ultraluminous infrared galaxies (ULIRGs) hosting some of the fastest and most massive molecular outflows known. Using ALMA and PdBI observations, we spatially resolve the CO(1-0) emission from the outflowing molecular gas in both and find maximum outflow velocities of $$ v_{\rm max} \sim 1600$$ and $$\sim 1700$$ km/s for IRAS 20100-4156 and IRAS 03158+4227, respectively. We find total gas mass outflow rates of $$\dot M_{\rm OF} \sim 670$$ and $$\sim 350$$ Msun/yr, respectively, corresponding to molecular gas depletion timescales $$\tau^{\rm dep}_{\rm OF} \sim 11$$ and $$\sim 16$$ Myr. This is nearly 3 times shorter than the depletion timescales implied by star formation, $$\tau^{\rm dep}_{\rm SFR} \sim 33$$ and $$\sim 46$$ Myr, respectively. To determine the outflow driving mechanism, we compare the starburst ($$L_{*}$$) and AGN ($$L_{\rm AGN}$$) luminosities to the outflowing energy and momentum fluxes, using mid-infrared spectral decomposition to discern $$L_{\rm AGN}$$. Comparison to other molecular outflows in ULIRGs reveals that outflow properties correlate similarly with $$L_{*}$$ and $$L_{\rm IR}$$ as with $$L_{\rm AGN}$$, indicating that AGN luminosity alone may not be a good tracer of feedback strength and that a combination of AGN and starburst activity may be driving the most powerful molecular outflows. We also detect the OH 1.667 GHz maser line from both sources and demonstrate its utility in detecting molecular outflows. 
    more » « less
  5. Abstract Long-duration GRB 200829A was detected by Fermi-GBM and Swift-BAT/XRT, and then rapidly observed by other ground-based telescopes. It has a weak γ -ray emission in the very early phase and is followed by a bright spiky γ -ray emission pulse. The radiation spectrum of the very early emission is best fitted by a power-law function with index ∼−1.7. However, the bright spiky γ -ray pulse, especially the time around the peak, exhibits a distinct two-component radiation spectrum, i.e., Band function combined with a blackbody radiation spectrum. We infer the photospheric properties and reveal a medium magnetization at a photospheric position by adopting the initial size of the outflow as r 0 = 10 9 cm. It implies that the Band component in this pulse may be formed during the dissipation of the magnetic field. The power-law radiation spectra found in the very early prompt emission may imply the external-shock origination of this phase. Then, we perform the Markov Chain Monte Carlo method fitting on the light curves of this burst, where the jet corresponding to the γ -ray pulse at around 20 s is used to refresh the external shock. It is shown that the light curves of the very early phase and X-ray afterglow after 40 s, involving the X-ray bump at around 100 s, can be well modeled in the external-shock scenario. For the obtained initial outflow, we estimate the minimum magnetization factor of the jet based on the fact that the photospheric emission of this jet is missed in the very early phase. 
    more » « less