ABSTRACT Observations of emission lines in active galactic nuclei (AGNs) often find fast (∼1000 km s−1) outflows extending to kiloparsec scales, seen in ionized, neutral atomic and molecular gas. In this work we present radiative transfer calculations of emission lines in hydrodynamic simulations of AGN outflows driven by a hot wind bubble, including non-equilibrium chemistry, to explore how these lines trace the physical properties of the multiphase outflow. We find that the hot bubble compresses the line-emitting gas, resulting in higher pressures than in the ambient interstellar medium or that would be produced by the AGN radiation pressure. This implies that observedmore »
The dual role of starburst and active galactic nuclei in driving extreme molecular outflows
We report molecular gas observations of IRAS 20100-4156 and IRAS 03158+4227, two local ultraluminous infrared galaxies (ULIRGs) hosting some of the fastest and most massive molecular outflows known. Using ALMA and PdBI observations, we spatially resolve the CO(1-0) emission from the outflowing molecular gas in both and find maximum outflow velocities of $ v_{\rm max} \sim 1600$ and $\sim 1700$ km/s for IRAS 20100-4156 and IRAS 03158+4227, respectively. We find total gas mass outflow rates of $\dot M_{\rm OF} \sim 670$ and $\sim 350$ Msun/yr, respectively, corresponding to molecular gas depletion timescales $\tau^{\rm dep}_{\rm OF} \sim 11$ and $\sim 16$ Myr. This is nearly 3 times shorter than the depletion timescales implied by star formation, $\tau^{\rm dep}_{\rm SFR} \sim 33$ and $\sim 46$ Myr, respectively. To determine the outflow driving mechanism, we compare the starburst ($L_{*}$) and AGN ($L_{\rm AGN}$) luminosities to the outflowing energy and momentum fluxes, using mid-infrared spectral decomposition to discern $L_{\rm AGN}$. Comparison to other molecular outflows in ULIRGs reveals that outflow properties correlate similarly with $L_{*}$ and $L_{\rm IR}$ as with $L_{\rm AGN}$, indicating that AGN luminosity alone may not be a good tracer of feedback strength and that a combination of AGN and starburst more »
- Award ID(s):
- 1614213
- Publication Date:
- NSF-PAR ID:
- 10058273
- Journal Name:
- The Astrophysical journal
- ISSN:
- 0004-637X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report the detection of 23 OH + 1 → 0 absorption, emission, or P-Cygni-shaped lines and CO( J = 9→8) emission lines in 18 Herschel-selected z = 2–6 starburst galaxies with the Atacama Large Millimeter/submillimeter Array and the NOrthern Extended Millimeter Array, taken as part of the Gas And Dust Over cosmic Time Galaxy Survey. We find that the CO( J = 9→8) luminosity is higher than expected based on the far-infrared luminosity when compared to nearby star-forming galaxies. Together with the strength of the OH + emission components, this may suggest that shock excitation of warm, densemore »
-
Abstract Accreting black holes can drive fast and energetic nuclear winds that may be an important feedback mechanism associated with active galactic nuclei (AGN). In this paper, we implement a scheme for capturing feedback from these fast nuclear winds and examine their impact in simulations of isolated disk galaxies. Stellar feedback is modeled using the FIRE physics and produces a realistic multiphase interstellar medium (ISM). We find that AGN winds drive the formation of a low-density, high-temperature central gas cavity that is broadly consistent with analytic model expectations. The effects of AGN feedback on the host galaxy are a strongmore »
-
ABSTRACT We study stellar-halo formation using six Milky-Way-mass galaxies in FIRE-2 cosmological zoom simulations. We find that $5{-}40{{\ \rm per\ cent}}$ of the outer (50–300 kpc) stellar halo in each system consists of in-situ stars that were born in outflows from the main galaxy. Outflow stars originate from gas accelerated by superbubble winds, which can be compressed, cool, and form co-moving stars. The majority of these stars remain bound to the halo and fall back with orbital properties similar to the rest of the stellar halo at z = 0. In the outer halo, outflow stars are more spatially homogeneous, metal-rich, and alpha-element-enhancedmore »
-
ABSTRACT In the centres of the Milky Way and M83, the global environmental properties thought to control star formation are very similar. However, M83’s nuclear star formation rate (SFR), as estimated by synchrotron and H α emission, is an order of magnitude higher than the Milky Way’s. To understand the origin of this difference we use ALMA observations of HCN (1 − 0) and HCO+ (1 − 0) to trace the dense gas at the size scale of individual molecular clouds (0.54 arcsec, 12 pc) in the inner ∼500 pc of M83, and compare this to gas clouds at similar resolution and galactocentric radius in themore »