Chemists are trained to recognize aromaticity semi-intuitively, using pictures of resonance structures and Frost-Musulin diagrams, or simple electron-counting rules such as Hückel's 4 n + 2/4 n rule. To quantify aromaticity one can use various aromaticity indices, each of which is a number reflecting some experimentally measured or calculated molecular property, or some feature of the molecular wavefunction, which often has no visual interpretation or may not have direct chemical relevance. We show that computed isotropic magnetic shielding isosurfaces and contour plots provide a feature-rich picture of aromaticity and chemical bonding which is both quantitative and easy-to-visualize and interpret. These isosurfaces and contour plots make good chemical sense as at atomic positions they are pinned to the nuclear shieldings which are experimentally measurable through chemical shifts. As examples we discuss the archetypal aromatic and antiaromatic molecules of benzene and square cyclobutadiene, followed by modern visual interpretations of Clar's aromatic sextet theory, the aromaticity of corannulene and heteroaromaticity.
more »
« less
Detailed Visualization of Aromaticity Using Isotropic Magnetic Shielding
Abstract For many years, Clar's aromatic sextet theory has served as a qualitative method for assessing the aromatic character of polycyclic aromatic hydrocarbons. A new approach, based on the calculation of isotropic magnetic shielding (IMS) contour plots, is shown to provide a feature‐rich picture of aromaticity that is both quantitative yet still easily interpreted. Chemists are visual creatures who are adept at discerning reactivity and chemical behavior from molecular structures. To quote Roald Hoffmann, “People like pictures. Chemists live off them.” Thus, the detailed image analysis we present simultaneously provides quantitative assessment of electronic structure, which is still easy‐to‐understand through visual inspection, embedded in an aesthetically appealing and intuitive picture that draws the reader in. We provide novel computed IMS contour plots for a representative selection of aromatic molecules. Where Clar's static drawings capture only a partial sketch of the electronic properties of a molecule, IMS contour plots present a detailed, global landscape of a molecule that sums all possible resonance structures. This novel analysis allows us to correct certain drawbacks of Clar's analysis with respect to polycyclic aromatics and quantitatively assess the bonding and electronic structure of acene hydrocarbons.
more »
« less
- Award ID(s):
- 1848261
- PAR ID:
- 10186192
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 132
- Issue:
- 43
- ISSN:
- 0044-8249
- Page Range / eLocation ID:
- p. 19437-19443
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The gas-to-particle transition is a critical and hitherto poorly understood aspect in carbonaceous soot particle formation. Polycyclic Aromatic Hydrocarbons (PAHs) are key precursors of the solid phase, but their role has not been assessed quantitatively probably because, even if analytical techniques to quantify them are well developed, the challenge to adapt them to flame environments are longstanding. Here, we present simultaneous measurements of forty-eight gaseous species through gas capillary-sampling followed by chemical analysis and of particle properties by optical techniques. Taken together, they enabled us to follow quantitatively the transition from parent fuel molecule to PAHs and, eventually, soot. Importantly, the approach resolved spatially the structure of flames even in the presence of steep gradients and, in turn, allowed us to follow the molecular growth process in unprecedented detail. Noteworthy is the adaptation to a flame environment of a novel technique based on trapping semi-volatile compounds in a filter, followed by off-line extraction and preconcentration for quantitative chemical analyses of species at mole fractions as low as parts per billion. The technique allowed for the quantitation of PAHs containing up to 6 aromatic rings. The principal finding is that only one- and two-ring aromatic compounds can account for soot nucleation, and thus provide the rate-limiting step in the reactions leading to soot. This finding impacts the fundamental understanding of soot formation and eases the modeling of soot nucleation by narrowing the precursors that must be predicted accurately.more » « less
-
null (Ed.)Unprecedented one-step CC bond cleavage leading to opening of the buckybowl (π-bowl), that could provide access to carbon-rich structures with previously inaccessible topologies, is reported; highlighting the possibility to implement drastically different synthetic routes to π-bowls in contrast to conventional ones applied for polycyclic aromatic hydrocarbons. Through theoretical modeling, we evaluated the mechanistic pathways feasible for π-bowl planarization and factors that could affect such a transformation including strain and released energies. Through employment of Marcus theory, optical spectroscopy, and crystallographic analysis, we estimated the possibility of charge transfer and electron coupling between “open” corannulene and a strong electron acceptor such as 7,7,8,8-tetracyanoquinodimethane. Alternative to a one-pot solid-state corannulene “unzipping” route, we reported a nine-step solution-based approach for preparation of novel planar “open” corannulene-based derivatives in which electronic structures and photophysical profiles were estimated through the energies and isosurfaces of the frontier natural transition orbitals.more » « less
-
The excited-state properties of molecular crystals are important for applications in organic electronic devices. The GW approximation and Bethe-Salpeter equation (GW+BSE) is the state-of-the-art method for calculating the excited-state properties of crystalline solids with periodic boundary conditions. We present the PAH101 dataset of GW +BSE calculations for 101 molecular crystals of polycyclic aromatic hydrocarbons (PAHs) with up to ∼500 atoms in the unit cell. The data records include the GW quasiparticle band structure, the fundamental band gap, the static dielectric constant, the first singlet exciton energy (optical gap), the first triplet exciton energy, the dielectric function, and optical absorption spectra for light polarized along the three lattice vectors. In addition, the dataset includes the density functional theory (DFT) single-molecule and crystal features used in Liu et al. [npj Computational Materials, 8, 70 (2022)]. We envision the dataset being used to (i) identify correlations between DFT and GW +BSE quantities, (ii) discover materials with desired electronic/ optical properties in the dataset itself, and (iii) train machine-learned models to help in materials discovery efforts. We provide examples to illustrate these three use cases.more » « less
-
The excited-state properties of molecular crystals are important for applications in organic electronic devices. The GW approximation and Bethe-Salpeter equation (GW +BSE) is the state-of-the-art method for calculating the excited-state properties of crystalline solids with periodic boundary conditions. We present the PAH101 dataset of GW +BSE calculations for 101 molecular crystals of polycyclic aromatic hydrocarbons (PAHs) with up to ∼500 atoms in the unit cell. The data records include the GW quasiparticle band structure, the fundamental band gap, the static dielectric constant, the first singlet exciton energy (optical gap), the first triplet exciton energy, the dielectric function, and optical absorption spectra for light polarized along the three lattice vectors. In addition, the dataset includes the density functional theory (DFT) single-molecule and crystal features used in Liu et al. [npj Computational Materials, 8, 70 (2022)]. We envision the dataset being used to (i) identify correlations between DFT and GW +BSE quantities, (ii) discover materials with desired electronic/ optical properties in the dataset itself, and (iii) train machine-learned models to help in materials discovery efforts. We provide examples to illustrate these three use cases.more » « less
An official website of the United States government
