skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Footprints of Doppler and aberration effects in cosmic microwave background experiments: statistical and cosmological implications
ABSTRACT In the frame of the Solar system, the Doppler and aberration effects cause distortions in the form of mode couplings in the cosmic microwave background (CMB) temperature and polarization power spectra and, hence, impose biases on the statistics derived by the moving observer. We explore several aspects of such biases and pay close attention to their effects on CMB polarization, which, previously, have not been examined in detail. A potentially important bias that we introduce here is boost variance—an additional term in cosmic variance, induced by the observer’s motion. Although this additional term is negligible for whole-sky experiments, in partial-sky experiments it can reach 10 per cent (temperature) to 20 per cent (polarization) of the standard cosmic variance (σ). Furthermore, we investigate the significance of motion-induced power and parity asymmetries in TT, EE, and TE as well as potential biases induced in cosmological parameter estimation performed with whole-sky TTTEEE. Using Planck-like simulations, we find that our local motion induces $$\sim 1\!-\!2 {{\ \rm per\ cent}}$$ hemispherical asymmetry in a wide range of angular scales in the CMB temperature and polarization power spectra; however, it does not imply any significant amount of parity asymmetry or shift in cosmological parameters. Finally, we examine the prospects of measuring the velocity of the Solar system w.r.t. the CMB with future experiments via the mode coupling induced by the Doppler and aberration effects. Using the CMB TT, EE, and TE power spectra up to ℓ = 4000, the Simons Observatory and CMB-S4 can make a dipole-independent measurement of our local velocity, respectively, at 8.5σ and 20σ.  more » « less
Award ID(s):
1910678
PAR ID:
10186221
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
493
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
1708 to 1724
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We use the emulation framework CosmoPower to construct and publicly release neural network emulators of cosmological observables, including the cosmic microwave background (CMB) temperature and polarization power spectra, matter power spectrum, distance-redshift relation, baryon acoustic oscillation (BAO) and redshift-space distortion (RSD) observables, and derived parameters. We train our emulators on Einstein–Boltzmann calculations obtained with high-precision numerical convergence settings, for a wide range of cosmological models including ΛCDM, wCDM, ΛCDM + Neff, and ΛCDM + Σmν. Our CMB emulators are accurate to better than 0.5 per cent out to ℓ = 104, which is sufficient for Stage-IV data analysis, and our P(k) emulators reach the same accuracy level out to $$k=50 \, \, \mathrm{Mpc}^{-1}$$, which is sufficient for Stage-III data analysis. We release the emulators via an online repository (CosmoPower Organisation), which will be continually updated with additional extended cosmological models. Our emulators accelerate cosmological data analysis by orders of magnitude, enabling cosmological parameter extraction analyses, using current survey data, to be performed on a laptop. We validate our emulators by comparing them to class and camb and by reproducing cosmological parameter constraints derived from Planck TT, TE, EE, and CMB lensing data, as well as from the Atacama Cosmology Telescope Data Release 4 CMB data, Dark Energy Survey Year-1 galaxy lensing and clustering data, and Baryon Oscillation Spectroscopic Survey Data Release 12 BAO and RSD data. 
    more » « less
  2. ABSTRACT In this work, we examine the impact of our motion with respect to the Cosmic Microwave Background (CMB) rest frame on statistics of CMB maps by examining the one-, two-, three-, and four- point statistics of simulated maps of the CMB and Sunyaev–Zeldovich (SZ) effects. We validate boosting codes by comparing their outcomes for temperature and polarization power spectra up to ℓ ≃ 6000. We derive and validate a new analytical formula for the computation of the boosted power spectrum of a signal with a generic frequency dependence. As an example we show how this increases the boosting correction to the power spectrum of CMB intensity measurements by $${\sim}30{{\ \rm per\ cent}}$$ at 150 GHz. We examine the effect of boosting on thermal and kinetic SZ power spectra from semianalytical and hydrodynamical simulations; the boosting correction is generally small for both simulations, except when considering frequencies near the tSZ null. For the non-Gaussian statistics, in general we find that boosting has no impact with two exceptions. We find that, whilst the statistics of the CMB convergence field are unaffected, quadratic estimators that are used to measure this field can become biased at the $$O(1){{\ \rm per\ cent}}$$ level by boosting effects. We present a simple modification to the standard estimators that removes this bias. Second, bispectrum estimators can receive a systematic bias from the Doppler induced quadrupole when there is anisotropy in the sky – in practice this anisotropy comes from masking and inhomogeneous noise. This effect is unobservable and already removed by existing analysis methods. 
    more » « less
  3. Abstract In this paper, we explore the power of the cosmic microwave background (CMB) polarization (E-mode) data to corroborate four potential anomalies in CMB temperature data: the lack of large angular-scale correlations, the alignment of the quadrupole and octupole (Q–O), the point-parity asymmetry, and the hemispherical power asymmetry. We use CMB simulations with noise representative of three experiments—the Planck satellite, the Cosmology Large Angular Scale Surveyor (CLASS), and the LiteBIRD satellite—to test how current and future data constrain the anomalies. We find the correlation coefficientsρbetween temperature andE-mode estimators to be less than 0.1, except for the point-parity asymmetry (ρ= 0.17 for cosmic-variance-limited simulations), confirming thatE-modes provide a check on the anomalies that is largely independent of temperature data. Compared to Planck component-separated CMB data (smica), the putative LiteBIRD survey would reduce errors onE-mode anomaly estimators by factors of ∼3 for hemispherical power asymmetry and point-parity asymmetry, and by ∼26 for lack of large-scale correlation. The improvement in Q–O alignment is not obvious due to large cosmic variance, but we found the ability to pin down the estimator value will be improved by a factor ≳100. Improvements with CLASS are intermediate to these. 
    more » « less
  4. Abstract We present a cross-correlation analysis between 1 resolution total intensity and polarization observations from the Atacama Cosmology Telescope (ACT) at 150 and 220 GHz and 15″ mid-infrared photometry from the Wide-field Infrared Survey Explorer (WISE) over 107 12.°5 × 12.°5 patches of sky. We detect a spatially isotropic signal in the WISE×ACTTTcross-power spectrum at 30σsignificance that we interpret as the correlation between the cosmic infrared background at ACT frequencies and polycyclic aromatic hydrocarbon (PAH) emission from galaxies in WISE, i.e., the cosmic PAH background. Within the Milky Way, the Galactic dustTTspectra are generally well described by power laws inℓover the range 103<ℓ< 104, but there is evidence both for variability in the power-law index and for non-power-law behavior in some regions. We measure a positive correlation between WISE total intensity and ACTE-mode polarization at 1000 <ℓ≲ 6000 at >3σin each of 35 distinct ∼100 deg2regions of the sky, suggesting that alignment between Galactic density structures and the local magnetic field persists to subparsec physical scales in these regions. The distribution ofTEamplitudes in thisℓrange across all 107 regions is biased to positive values, while there is no evidence for such a bias in theTBspectra. This work constitutes the highest-ℓmeasurements of the Galactic dustTEspectrum to date and indicates that cross-correlation with high-resolution mid-infrared measurements of dust emission is a promising tool for constraining the spatial statistics of dust emission at millimeter wavelengths. 
    more » « less
  5. ABSTRACT We present a novel technique for cosmic microwave background (CMB) foreground subtraction based on the framework of blind source separation. Inspired by previous work incorporating local variation to generalized morphological component analysis (GMCA), we introduce hierarchical GMCA (HGMCA), a Bayesian hierarchical graphical model for source separation. We test our method on Nside = 256 simulated sky maps that include dust, synchrotron, free–free, and anomalous microwave emission, and show that HGMCA reduces foreground contamination by $$25{{\ \rm per\ cent}}$$ over GMCA in both the regions included and excluded by the Planck UT78 mask, decreases the error in the measurement of the CMB temperature power spectrum to the 0.02–0.03 per cent level at ℓ > 200 (and $$\lt 0.26{{\ \rm per\ cent}}$$ for all ℓ), and reduces correlation to all the foregrounds. We find equivalent or improved performance when compared to state-of-the-art internal linear combination type algorithms on these simulations, suggesting that HGMCA may be a competitive alternative to foreground separation techniques previously applied to observed CMB data. Additionally, we show that our performance does not suffer when we perturb model parameters or alter the CMB realization, which suggests that our algorithm generalizes well beyond our simplified simulations. Our results open a new avenue for constructing CMB maps through Bayesian hierarchical analysis. 
    more » « less