skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stochastic Galerkin method for cloud simulation
Abstract We develop a stochastic Galerkin method for a coupled Navier-Stokes-cloud system that models dynamics of warm clouds. Our goal is to explicitly describe the evolution of uncertainties that arise due to unknown input data, such as model parameters and initial or boundary conditions. The developed stochastic Galerkin method combines the space-time approximation obtained by a suitable finite volume method with a spectral-type approximation based on the generalized polynomial chaos expansion in the stochastic space. The resulting numerical scheme yields a second-order accurate approximation in both space and time and exponential convergence in the stochastic space. Our numerical results demonstrate the reliability and robustness of the stochastic Galerkin method. We also use the proposed method to study the behavior of clouds in certain perturbed scenarios, for examples, the ones leading to changes in macroscopic cloud pattern as a shift from hexagonal to rectangular structures.  more » « less
Award ID(s):
1818684
PAR ID:
10186335
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Mathematics of Climate and Weather Forecasting
Volume:
5
Issue:
1
ISSN:
2353-6438
Page Range / eLocation ID:
65 to 106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work introduces a general framework for establishing the long time accuracy for approximations of Markovian dynamical systems on separable Banach spaces. Our results illuminate the role that a certain uniformity in Wasserstein contraction rates for the approximating dynamics bears on long time accuracy estimates. In particular, our approach yields weak consistency bounds on $${\mathbb{R}}^{+}$$ while providing a means to sidestepping a commonly occurring situation where certain higher order moment bounds are unavailable for the approximating dynamics. Additionally, to facilitate the analytical core of our approach, we develop a refinement of certain ‘weak Harris theorems’. This extension expands the scope of applicability of such Wasserstein contraction estimates to a variety of interesting stochastic partial differential equation examples involving weaker dissipation or stronger nonlinearity than would be covered by the existing literature. As a guiding and paradigmatic example, we apply our formalism to the stochastic 2D Navier–Stokes equations and to a semi-implicit in time and spectral Galerkin in space numerical approximation of this system. In the case of a numerical approximation, we establish quantitative estimates on the approximation of invariant measures as well as prove weak consistency on $${\mathbb{R}}^{+}$$. To develop these numerical analysis results, we provide a refinement of $$L^{2}_{x}$$ accuracy bounds in comparison to the existing literature, which are results of independent interest. 
    more » « less
  2. We describe a novel meshless Galerkin method for numerically solving semilinear parabolic equations on spheres. The new approximation method is based upon a discretization in space using spherical basis functions in a Galerkin approximation. As our spatial approximation spaces are built with spherical basis functions, they can be of arbitrary order and do not require the construction of an underlying mesh. We will establish convergence of the meshless method by adapting, to the sphere, a convergence result due to Thom\'ee and Wahlbin. To do this requires proving new approximation results, including a novel inverse or Nikolskii inequality for spherical basis functions. We also discuss how the integrals in the Galerkin method can accurately and more efficiently be computed using a recently developed quadrature rule. These new quadrature formulas also apply to Galerkin approximations of elliptic partial differential equations on the sphere. Finally, we provide several numerical examples, including the Allen-Cahn for the sphere. 
    more » « less
  3. Abstract An adaptive modified weak Galerkin method (AmWG) for an elliptic problem is studied in this article, in addition to its convergence and optimality. The modified weak Galerkin bilinear form is simplified without the need of the skeletal variable, and the approximation space is chosen as the discontinuous polynomial space as in the discontinuous Galerkin method. Upon a reliable residual‐baseda posteriorierror estimator, an adaptive algorithm is proposed together with its convergence and quasi‐optimality proved for the lowest order case. The primary tool is to bridge the connection between the modified weak Galerkin method and the Crouzeix–Raviart nonconforming finite element. Unlike the traditional convergence analysis for methods with a discontinuous polynomial approximation space, the convergence of AmWG is penalty parameter free. Numerical results are presented to support the theoretical results. 
    more » « less
  4. Abstract We propose a stochastic Galerkin method using sparse wavelet bases for the Boltzmann equation with multi-dimensional random inputs. Themethod uses locally supported piecewise polynomials as an orthonormal basis of the random space. By a sparse approach, only a moderate number of basis functions is required to achieve good accuracy in multi-dimensional random spaces. We discover a sparse structure of a set of basis-related coefficients, which allows us to accelerate the computation of the collision operator. Regularity of the solution of the Boltzmann equation in the random space and an accuracy result of the stochastic Galerkin method are proved in multi-dimensional cases. The efficiency of the method is illustrated by numerical examples with uncertainties from the initial data, boundary data and collision kernel. 
    more » « less
  5. null (Ed.)
    In this paper, we propose a local discontinuous Galerkin (LDG) method for nonlinear and possibly degenerate parabolic stochastic partial differential equations, which is a high-order numerical scheme. It extends the discontinuous Galerkin (DG) method for purely hyperbolic equations to parabolic equations and shares with the DG method its advantage and flexibility. We prove the L 2 -stability of the numerical scheme for fully nonlinear equations. Optimal error estimates ( O ( h (k+1) )) for smooth solutions of semi-linear stochastic equations is shown if polynomials of degree k are used. We use an explicit derivative-free order 1.5 time discretization scheme to solve the matrix-valued stochastic ordinary differential equations derived from the spatial discretization. Numerical examples are given to display the performance of the LDG method. 
    more » « less