skip to main content


Title: Decompensation in Critical Care: Early Prediction of Acute Heart Failure Onset
Background Heart failure is a leading cause of mortality and morbidity worldwide. Acute heart failure, broadly defined as rapid onset of new or worsening signs and symptoms of heart failure, often requires hospitalization and admission to the intensive care unit (ICU). This acute condition is highly heterogeneous and less well-understood as compared to chronic heart failure. The ICU, through detailed and continuously monitored patient data, provides an opportunity to retrospectively analyze decompensation and heart failure to evaluate physiological states and patient outcomes. Objective The goal of this study is to examine the prevalence of cardiovascular risk factors among those admitted to ICUs and to evaluate combinations of clinical features that are predictive of decompensation events, such as the onset of acute heart failure, using machine learning techniques. To accomplish this objective, we leveraged tele-ICU data from over 200 hospitals across the United States. Methods We evaluated the feasibility of predicting decompensation soon after ICU admission for 26,534 patients admitted without a history of heart failure with specific heart failure risk factors (ie, coronary artery disease, hypertension, and myocardial infarction) and 96,350 patients admitted without risk factors using remotely monitored laboratory, vital signs, and discrete physiological measurements. Multivariate logistic regression and random forest models were applied to predict decompensation and highlight important features from combinations of model inputs from dissimilar data. Results The most prevalent risk factor in our data set was hypertension, although most patients diagnosed with heart failure were admitted to the ICU without a risk factor. The highest heart failure prediction accuracy was 0.951, and the highest area under the receiver operating characteristic curve was 0.9503 with random forest and combined vital signs, laboratory values, and discrete physiological measurements. Random forest feature importance also highlighted combinations of several discrete physiological features and laboratory measures as most indicative of decompensation. Timeline analysis of aggregate vital signs revealed a point of diminishing returns where additional vital signs data did not continue to improve results. Conclusions Heart failure risk factors are common in tele-ICU data, although most patients that are diagnosed with heart failure later in an ICU stay presented without risk factors making a prediction of decompensation critical. Decompensation was predicted with reasonable accuracy using tele-ICU data, and optimal data extraction for time series vital signs data was identified near a 200-minute window size. Overall, results suggest combinations of laboratory measurements and vital signs are viable for early and continuous prediction of patient decompensation.  more » « less
Award ID(s):
1838745
NSF-PAR ID:
10186367
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
JMIR Medical Informatics
Volume:
8
Issue:
8
ISSN:
2291-9694
Page Range / eLocation ID:
e19892
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Acute respiratory failure is generally treated with invasive mechanical ventilation or noninvasive respiratory support strategies. The efficacies of the various strategies are not fully understood. There is a need for accurate therapy-based phenotyping for secondary analyses of electronic health record data to answer research questions regarding respiratory management and outcomes with each strategy. Objective The objective of this study was to address knowledge gaps related to ventilation therapy strategies across diverse patient populations by developing an algorithm for accurate identification of patients with acute respiratory failure. To accomplish this objective, our goal was to develop rule-based computable phenotypes for patients with acute respiratory failure using remotely monitored intensive care unit (tele-ICU) data. This approach permits analyses by ventilation strategy across broad patient populations of interest with the ability to sub-phenotype as research questions require. Methods Tele-ICU data from ≥200 hospitals were used to create a rule-based algorithm for phenotyping patients with acute respiratory failure, defined as an adult patient requiring invasive mechanical ventilation or a noninvasive strategy. The dataset spans a wide range of hospitals and ICU types across all US regions. Structured clinical data, including ventilation therapy start and stop times, medication records, and nurse and respiratory therapy charts, were used to define clinical phenotypes. All adult patients of any diagnoses with record of ventilation therapy were included. Patients were categorized by ventilation type, and analysis of event sequences using record timestamps defined each phenotype. Manual validation was performed on 5% of patients in each phenotype. Results We developed 7 phenotypes: (0) invasive mechanical ventilation, (1) noninvasive positive-pressure ventilation, (2) high-flow nasal insufflation, (3) noninvasive positive-pressure ventilation subsequently requiring intubation, (4) high-flow nasal insufflation subsequently requiring intubation, (5) invasive mechanical ventilation with extubation to noninvasive positive-pressure ventilation, and (6) invasive mechanical ventilation with extubation to high-flow nasal insufflation. A total of 27,734 patients met our phenotype criteria and were categorized into these ventilation subgroups. Manual validation of a random selection of 5% of records from each phenotype resulted in a total accuracy of 88% and a precision and recall of 0.8789 and 0.8785, respectively, across all phenotypes. Individual phenotype validation showed that the algorithm categorizes patients particularly well but has challenges with patients that require ≥2 management strategies. Conclusions Our proposed computable phenotyping algorithm for patients with acute respiratory failure effectively identifies patients for therapy-focused research regardless of admission diagnosis or comorbidities and allows for management strategy comparisons across populations of interest. 
    more » « less
  2. null (Ed.)
    The new coronavirus (now named SARS-CoV-2) causing the disease pandemic in 2019 (COVID-19), has so far infected over 35 million people worldwide and killed more than 1 million. Most people with COVID-19 have no symptoms or only mild symptoms. But some become seriously ill and need hospitalization. The sickest are admitted to an Intensive Care Unit (ICU) and may need mechanical ventilation to help them breath. Being able to predict which patients with COVID-19 will become severely ill could help hospitals around the world manage the huge influx of patients caused by the pandemic and save lives. Now, Hao, Sotudian, Wang, Xu et al. show that computer models using artificial intelligence technology can help predict which COVID-19 patients will be hospitalized, admitted to the ICU, or need mechanical ventilation. Using data of 2,566 COVID-19 patients from five Massachusetts hospitals, Hao et al. created three separate models that can predict hospitalization, ICU admission, and the need for mechanical ventilation with more than 86% accuracy, based on patient characteristics, clinical symptoms, laboratory results and chest x-rays. Hao et al. found that the patients’ vital signs, age, obesity, difficulty breathing, and underlying diseases like diabetes, were the strongest predictors of the need for hospitalization. Being male, having diabetes, cloudy chest x-rays, and certain laboratory results were the most important risk factors for intensive care treatment and mechanical ventilation. Laboratory results suggesting tissue damage, severe inflammation or oxygen deprivation in the body's tissues were important warning signs of severe disease. The results provide a more detailed picture of the patients who are likely to suffer from severe forms of COVID-19. Using the predictive models may help physicians identify patients who appear okay but need closer monitoring and more aggressive treatment. The models may also help policy makers decide who needs workplace accommodations such as being allowed to work from home, which individuals may benefit from more frequent testing, and who should be prioritized for vaccination when a vaccine becomes available. 
    more » « less
  3. Abstract Background Sepsis is a heterogeneous syndrome, and the identification of clinical subphenotypes is essential. Although organ dysfunction is a defining element of sepsis, subphenotypes of differential trajectory are not well studied. We sought to identify distinct Sequential Organ Failure Assessment (SOFA) score trajectory-based subphenotypes in sepsis. Methods We created 72-h SOFA score trajectories in patients with sepsis from four diverse intensive care unit (ICU) cohorts. We then used dynamic time warping (DTW) to compute heterogeneous SOFA trajectory similarities and hierarchical agglomerative clustering (HAC) to identify trajectory-based subphenotypes. Patient characteristics were compared between subphenotypes and a random forest model was developed to predict subphenotype membership at 6 and 24 h after being admitted to the ICU. The model was tested on three validation cohorts. Sensitivity analyses were performed with alternative clustering methodologies. Results A total of 4678, 3665, 12,282, and 4804 unique sepsis patients were included in development and three validation cohorts, respectively. Four subphenotypes were identified in the development cohort: Rapidly Worsening ( n  = 612, 13.1%), Delayed Worsening ( n  = 960, 20.5%), Rapidly Improving ( n  = 1932, 41.3%), and Delayed Improving ( n  = 1174, 25.1%). Baseline characteristics, including the pattern of organ dysfunction, varied between subphenotypes. Rapidly Worsening was defined by a higher comorbidity burden, acidosis, and visceral organ dysfunction. Rapidly Improving was defined by vasopressor use without acidosis. Outcomes differed across the subphenotypes, Rapidly Worsening had the highest in-hospital mortality (28.3%, P -value < 0.001), despite a lower SOFA (mean: 4.5) at ICU admission compared to Rapidly Improving (mortality:5.5%, mean SOFA: 5.5). An overall prediction accuracy of 0.78 (95% CI, [0.77, 0.8]) was obtained at 6 h after ICU admission, which increased to 0.87 (95% CI, [0.86, 0.88]) at 24 h. Similar subphenotypes were replicated in three validation cohorts. The majority of patients with sepsis have an improving phenotype with a lower mortality risk; however, they make up over 20% of all deaths due to their larger numbers. Conclusions Four novel, clinically-defined, trajectory-based sepsis subphenotypes were identified and validated. Identifying trajectory-based subphenotypes has immediate implications for the powering and predictive enrichment of clinical trials. Understanding the pathophysiology of these differential trajectories may reveal unanticipated therapeutic targets and identify more precise populations and endpoints for clinical trials. 
    more » « less
  4. Keim-Malpass, Jessica (Ed.)
    During the early stages of hospital admission, clinicians use limited information to make decisions as patient acuity evolves. We hypothesized that clustering analysis of vital signs measured within six hours of hospital admission would reveal distinct patient phenotypes with unique pathophysiological signatures and clinical outcomes. We created a longitudinal electronic health record dataset for 75,762 adult patient admissions to a tertiary care center in 2014–2016 lasting six hours or longer. Physiotypes were derived via unsupervised machine learning in a training cohort of 41,502 patients applying consensus k -means clustering to six vital signs measured within six hours of admission. Reproducibility and correlation with clinical biomarkers and outcomes were assessed in validation cohort of 17,415 patients and testing cohort of 16,845 patients. Training, validation, and testing cohorts had similar age (54–55 years) and sex (55% female), distributions. There were four distinct clusters. Physiotype A had physiologic signals consistent with early vasoplegia, hypothermia, and low-grade inflammation and favorable short-and long-term clinical outcomes despite early, severe illness. Physiotype B exhibited early tachycardia, tachypnea, and hypoxemia followed by the highest incidence of prolonged respiratory insufficiency, sepsis, acute kidney injury, and short- and long-term mortality. Physiotype C had minimal early physiological derangement and favorable clinical outcomes. Physiotype D had the greatest prevalence of chronic cardiovascular and kidney disease, presented with severely elevated blood pressure, and had good short-term outcomes but suffered increased 3-year mortality. Comparing sequential organ failure assessment (SOFA) scores across physiotypes demonstrated that clustering did not simply recapitulate previously established acuity assessments. In a heterogeneous cohort of hospitalized patients, unsupervised machine learning techniques applied to routine, early vital sign data identified physiotypes with unique disease categories and distinct clinical outcomes. This approach has the potential to augment understanding of pathophysiology by distilling thousands of disease states into a few physiological signatures. 
    more » « less
  5. Abstract

    Unrecognized deterioration of COVID-19 patients can lead to high morbidity and mortality. Most existing deterioration prediction models require a large number of clinical information, typically collected in hospital settings, such as medical images or comprehensive laboratory tests. This is infeasible for telehealth solutions and highlights a gap in deterioration prediction models based on minimal data, which can be recorded at a large scale in any clinic, nursing home, or even at the patient’s home. In this study, we develop and compare two prognostic models that predict if a patient will experience deterioration in the forthcoming 3 to 24 h. The models sequentially process routine triadic vital signs: (a) oxygen saturation, (b) heart rate, and (c) temperature. These models are also provided with basic patient information, including sex, age, vaccination status, vaccination date, and status of obesity, hypertension, or diabetes. The difference between the two models is the way that the temporal dynamics of the vital signs are processed. Model #1 utilizes a temporally-dilated version of the Long-Short Term Memory model (LSTM) for temporal processes, and Model #2 utilizes a residual temporal convolutional network (TCN) for this purpose. We train and evaluate the models using data collected from 37,006 COVID-19 patients at NYU Langone Health in New York, USA. The convolution-based model outperforms the LSTM based model, achieving a high AUROC of 0.8844–0.9336 for 3 to 24 h deterioration prediction on a held-out test set. We also conduct occlusion experiments to evaluate the importance of each input feature, which reveals the significance of continuously monitoring the variation of the vital signs. Our results show the prospect for accurate deterioration forecast using a minimum feature set that can be relatively easily obtained using wearable devices and self-reported patient information.

     
    more » « less