Background Heart failure is a leading cause of mortality and morbidity worldwide. Acute heart failure, broadly defined as rapid onset of new or worsening signs and symptoms of heart failure, often requires hospitalization and admission to the intensive care unit (ICU). This acute condition is highly heterogeneous and less well-understood as compared to chronic heart failure. The ICU, through detailed and continuously monitored patient data, provides an opportunity to retrospectively analyze decompensation and heart failure to evaluate physiological states and patient outcomes. Objective The goal of this study is to examine the prevalence of cardiovascular risk factors among those admitted to ICUs and to evaluate combinations of clinical features that are predictive of decompensation events, such as the onset of acute heart failure, using machine learning techniques. To accomplish this objective, we leveraged tele-ICU data from over 200 hospitals across the United States. Methods We evaluated the feasibility of predicting decompensation soon after ICU admission for 26,534 patients admitted without a history of heart failure with specific heart failure risk factors (ie, coronary artery disease, hypertension, and myocardial infarction) and 96,350 patients admitted without risk factors using remotely monitored laboratory, vital signs, and discrete physiological measurements. Multivariate logistic regression and random forest models were applied to predict decompensation and highlight important features from combinations of model inputs from dissimilar data. Results The most prevalent risk factor in our data set was hypertension, although most patients diagnosed with heart failure were admitted to the ICU without a risk factor. The highest heart failure prediction accuracy was 0.951, and the highest area under the receiver operating characteristic curve was 0.9503 with random forest and combined vital signs, laboratory values, and discrete physiological measurements. Random forest feature importance also highlighted combinations of several discrete physiological features and laboratory measures as most indicative of decompensation. Timeline analysis of aggregate vital signs revealed a point of diminishing returns where additional vital signs data did not continue to improve results. Conclusions Heart failure risk factors are common in tele-ICU data, although most patients that are diagnosed with heart failure later in an ICU stay presented without risk factors making a prediction of decompensation critical. Decompensation was predicted with reasonable accuracy using tele-ICU data, and optimal data extraction for time series vital signs data was identified near a 200-minute window size. Overall, results suggest combinations of laboratory measurements and vital signs are viable for early and continuous prediction of patient decompensation. 
                        more » 
                        « less   
                    
                            
                            Development and external validation of a dynamic risk score for early prediction of cardiogenic shock in cardiac intensive care units using machine learning
                        
                    
    
            Abstract AimsMyocardial infarction and heart failure are major cardiovascular diseases that affect millions of people in the USA with morbidity and mortality being highest among patients who develop cardiogenic shock. Early recognition of cardiogenic shock allows prompt implementation of treatment measures. Our objective is to develop a new dynamic risk score, called CShock, to improve early detection of cardiogenic shock in the cardiac intensive care unit (ICU). Methods and resultsWe developed and externally validated a deep learning-based risk stratification tool, called CShock, for patients admitted into the cardiac ICU with acute decompensated heart failure and/or myocardial infarction to predict the onset of cardiogenic shock. We prepared a cardiac ICU dataset using the Medical Information Mart for Intensive Care-III database by annotating with physician-adjudicated outcomes. This dataset which consisted of 1500 patients with 204 having cardiogenic/mixed shock was then used to train CShock. The features used to train the model for CShock included patient demographics, cardiac ICU admission diagnoses, routinely measured laboratory values and vital signs, and relevant features manually extracted from echocardiogram and left heart catheterization reports. We externally validated the risk model on the New York University (NYU) Langone Health cardiac ICU database which was also annotated with physician-adjudicated outcomes. The external validation cohort consisted of 131 patients with 25 patients experiencing cardiogenic/mixed shock. CShock achieved an area under the receiver operator characteristic curve (AUROC) of 0.821 (95% CI 0.792–0.850). CShock was externally validated in the more contemporary NYU cohort and achieved an AUROC of 0.800 (95% CI 0.717–0.884), demonstrating its generalizability in other cardiac ICUs. Having an elevated heart rate is most predictive of cardiogenic shock development based on Shapley values. The other top 10 predictors are having an admission diagnosis of myocardial infarction with ST-segment elevation, having an admission diagnosis of acute decompensated heart failure, Braden Scale, Glasgow Coma Scale, blood urea nitrogen, systolic blood pressure, serum chloride, serum sodium, and arterial blood pH. ConclusionThe novel CShock score has the potential to provide automated detection and early warning for cardiogenic shock and improve the outcomes for millions of patients who suffer from myocardial infarction and heart failure. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2404476
- PAR ID:
- 10608872
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Oxford
- Date Published:
- Journal Name:
- European Heart Journal: Acute Cardiovascular Care
- Volume:
- 13
- Issue:
- 6
- ISSN:
- 2048-8726
- Page Range / eLocation ID:
- 472 to 480
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            In the United States, heart disease is the leading cause of death, killing about 695,000 people each year. Myocardial infarction (MI) is a cardiac complication which occurs when blood flow to a portion of the heart decreases or halts, leading to damage in the heart muscle. Heart failure and Atrial fibrillation (AF) are closely associated with MI. Heart failure is a common complication of MI and a risk factor for AF. Machine learning (ML) and deep learning techniques have shown potential in predicting cardiovascular conditions. However, developing a sim- plified predictive model, along with a thorough feature analysis, is challenging due to various factors, including lifestyle, age, family history, medical conditions, and clinical variables for cardiac complications prediction. This paper aims to develop simplified models with comprehensive feature analysis and data preprocessing for predicting cardiac complications, such as heart failure and atrial fibrillation linked with MI, using a publicly available dataset of myocardial infarction patients. This will help the students and health care professionals understand various factors responsible for cardiac complications through a simplified workflow. By prioritizing interpretability, this paper illustrates how simpler models, like decision trees and logistic regression, can provide transparent decision-making processes while still maintaining a balance with accuracy. Additionally, this paper examines how age-specific factors affect heart failure and atrial fibrillation conditions. Overall this research focuses on making machine learning accessible and interpretable. Its goal is to equip students and non-experts with practical tools to understand how ML can be applied in healthcare, particularly for the cardiac complications prediction for patients having MI.more » « less
- 
            Cardiac rehabilitation (CR) is a medically supervised program designed to improve heart health after a cardiac event. Despite its demonstrated clinical benefits, CR participation among eligible patients remains poor due to low referral rates and individual barriers to care. To evaluate CR participation by patients who receive care from hospital-integrated physicians compared with independent physicians, and subsequently, to examine CR and recurrent cardiac hospitalizations. This retrospective cohort study evaluated Medicare Part A and Part B claims data from calendar years 2016 to 2019. All analyses were conducted between January 1 and April 30, 2024. Patients were included if they had a qualifying event for CR between 2017 and 2018, and qualifying events were identified using diagnosis codes on inpatient claims and procedure codes on outpatient and carrier claims. Eligible patients also had to continuously enroll in fee-for-service Medicare for 12 months or more before and after the index event. Physicians’ integration status and patients’ CR participation were determined during the 12-month follow-up period. The study covariates were ascertained during the 12 months before the index event. ExposureHospital-integration status of the treating physician during follow-up. Main Outcomes and MeasuresPostindex CR participation was determined by qualifying procedure codes on outpatient and carrier claims. ResultsThe study consisted of 28 596 Medicare patients eligible for CR. Their mean (SD) age was 74.0 (9.6) years; 16 839 (58.9%) were male. A total of 9037 patients (31.6%) were treated by a hospital-integrated physician, of which 2995 (33.1%) received CR during follow-up. Logistic regression via propensity score weighting showed that having a hospital-integrated physician was associated with an 11% increase in the odds of receiving CR (odds ratio [OR], 1.11; 95% CI, 1.05-1.18). Additionally, CR participation was associated with a 14% decrease in the odds of recurrent cardiovascular-related hospitalizations (OR, 0.86; 95% CI, 0.81-0.91). The findings of this cohort study suggest that hospital integration has the potential to facilitate greater CR participation and improve heart care. Several factors may help explain this positive association, including enhanced care coordination and value-based payment policies. Further research is needed to assess the association of integration with other appropriate high-quality care activities.more » « less
- 
            Abstract Increasing the number of organ donations after circulatory death (DCD) has been identified as one of the most important ways of addressing the ongoing organ shortage. While recent technological advances in organ transplantation have increased their success rate, a substantial challenge in increasing the number of DCD donations resides in the uncertainty regarding the timing of cardiac death after terminal extubation, impacting the risk of prolonged ischemic organ injury, and negatively affecting post-transplant outcomes. In this study, we trained and externally validated an ODE-RNN model, which combines recurrent neural network with neural ordinary equations and excels in processing irregularly-sampled time series data. The model is designed to predict time-to-death following terminal extubation in the intensive care unit (ICU) using the history of clinical observations. Our model was trained on a cohort of 3,238 patients from Yale New Haven Hospital, and validated on an external cohort of 1,908 patients from six hospitals across Connecticut. The model achieved accuracies of$$95.3~\pm ~1.0\%$$and$$95.4~\pm ~0.7\%$$for predicting whether death would occur in the first 30 and 60 minutes, respectively, with a calibration error of$$0.024~\pm ~0.009$$. Heart rate, respiratory rate, mean arterial blood pressure (MAP), oxygen saturation (SpO2), and Glasgow Coma Scale (GCS) scores were identified as the most important predictors. Surpassing existing clinical scores, our model sets the stage for reduced organ acquisition costs and improved post-transplant outcomes.more » « less
- 
            Abstract IntroductionStudies investigating the relationship between blood pressure (BP) measurements from electronic health records (EHRs) and Alzheimer's disease (AD) rely on summary statistics, like BP variability, and have only been validated at a single institution. We hypothesize that leveraging BP trajectories can accurately estimate AD risk across different populations. MethodsIn a retrospective cohort study, EHR data from Veterans Affairs (VA) patients were used to train and internally validate a machine learning model to predict AD onset within 5 years. External validation was conducted on patients from Michigan Medicine (MM). ResultsThe VA and MM cohorts included 6860 and 1201 patients, respectively. Model performance using BP trajectories was modest but comparable (area under the receiver operating characteristic curve [AUROC] = 0.64 [95% confidence interval (CI) = 0.54–0.73] for VA vs. AUROC = 0.66 [95% CI = 0.55–0.76] for MM). ConclusionApproaches that directly leverage BP trajectories from EHR data could aid in AD risk stratification across institutions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    