skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous-time model identification: application on a behavioural (miLife) study
To develop efficient just-in-time personalised treatments, dynamical models are needed that provide a description of how an individual responds to treatment. However, available system identification approaches cannot effectively be applied to most behavioural datasets since, usually, the data collected is subjected to a large amount of noise and time sampling is not uniform. To be able to circumvent these issues, in this paper a new method is proposed for parsimonious system identification of continuous-time systems that does not require specially structured data. The developed algorithm provides an effective way to leverage these ‘non-standard’ datasets to identify continuous time dynamical models that are compati- ble with a-priori information available on the process. The algorithm developed is tested on data obtained from a behavioural study on adolescents and violence. The objective is to model the temporal dynamics of the association between violence exposure and mental health symptoms (depression and anxiety) in day- to-day life among a sample of adolescents at heightened risk for both substance use exposure and problem behaviour. The information extracted from individual models of behaviour such as the maximum burden and the time of fading away of depression/anxiety does differ substantially from person to person. This information has the potential to be useful to design personalised interventions that would have a better chance of succeeding.  more » « less
Award ID(s):
1808381
PAR ID:
10186510
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
International Journal of Control
ISSN:
0020-7179
Page Range / eLocation ID:
1 to 12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study aimed to examine changes in depression and anxiety symptoms from before to during the first 6 months of the COVID‐19 pandemic in a sample of 1,339 adolescents (9–18 years old, 59% female) from three countries. We also examined if age, race/ethnicity, disease burden, or strictness of government restrictions moderated change in symptoms. Data from 12 longitudinal studies (10 U.S., 1 Netherlands, 1 Peru) were combined. Linear mixed effect models showed that depression, but not anxiety, symptoms increased significantly (median increase = 28%). The most negative mental health impacts were reported by multiracial adolescents and those under ‘lockdown’ restrictions. Policy makers need to consider these impacts by investing in ways to support adolescents’ mental health during the pandemic. 
    more » « less
  2. Abstract Vehicle behaviour prediction provides important information for decision‐making in modern intelligent transportation systems. People with different driving styles have considerably different driving behaviours and hence exhibit different behaviour tendency. However, most existing prediction methods do not consider the different tendencies in driving styles and apply the same model to all vehicles. Furthermore, most of the existing driver classification methods rely on offline learning that requires a long observation of driving history and hence are not suitable for real‐time driving behaviour analysis. To facilitate personalised models that can potentially improve vehicle behaviour prediction, the authors propose an algorithm that classifies drivers into different driving styles. The algorithm only requires data from a short observation window and it is more applicable for real‐time online applications compared with existing methods that require a long term observation. Experiment results demonstrate that the proposed algorithm can achieve consistent classification results and provide intuitive interpretation and statistical characteristics of different driving styles, which can be further used for vehicle behaviour prediction. 
    more » « less
  3. Anxiety and depression in children and adolescents warrant special attention as a public health concern given their devastating and long-term effects on development and mental health. Multiple factors, ranging from genetic vulnerabilities to environmental stressors, influence the risk for the disorders. This study aimed to understand how environmental factors and genomics affect children and adolescents anxiety and depression across three cohorts: Adolescent Brain and Cognitive Development Study (US, age of 9-10; N=11,875), Consortium on Vulnerability to Externalizing Disorders and Addictions (INDIA, age of 6-17; N=4,326) and IMAGEN (EUROPE, age of 14; N=1888). We performed data harmonization and identified the environmental impact on anxiety/depression using a linear mixed-effect model, recursive feature elimination regression, and the LASSO regression model. Subsequently, genome-wide association analyses with consideration of significant environmental factors were performed for all three cohorts by mega-analysis and meta-analysis, followed by functional annotations. The results showed that multiple environmental factors contributed to the risk of anxiety and depression during development, where early life stress and school support index had the most significant and consistent impact across all three cohorts. In both meta, and mega-analysis, SNP rs79878474 in chr11p15 emerged as a particularly promising candidate associated with anxiety and depression, despite not reaching genomic significance. Gene set analysis on the common genes mapped from top promising SNPs of both meta and mega analyses found significant enrichment in regions of chr11p15 and chr3q26, in the function of potassium channels and insulin secretion, in particular Kv3, Kir-6.2, SUR potassium channels encoded by the KCNC1, KCNJ11, and ABCCC8 genes respectively, in chr11p15. Tissue enrichment analysis showed significant enrichment in the small intestine, and a trend of enrichment in the cerebellum. Our findings provide evidences of consistent environmental impact from early life stress and school support index on anxiety and depression during development and also highlight the genetic association between mutations in potassium channels, which support the stress-depression connection via hypothalamic-pituitary-adrenal axis, along with the potential modulating role of potassium channels. 
    more » « less
  4. Faisal, Aldo A (Ed.)
    Animals display characteristic behavioural patterns when performing a task, such as the spiraling of a soaring bird or the surge-and-cast of a male moth searching for a female. Identifying such recurring sequences occurring rarely in noisy behavioural data is key to understanding the behavioural response to a distributed stimulus in unrestrained animals. Existing models seek to describe the dynamics of behaviour or segment individual locomotor episodes rather than to identify the rare and transient sequences of locomotor episodes that make up the behavioural response. To fill this gap, we develop a lexical, hierarchical model of behaviour. We designed an unsupervised algorithm called “BASS” to efficiently identify and segment recurring behavioural action sequences transiently occurring in long behavioural recordings. When applied to navigating larval zebrafish, BASS extracts a dictionary of remarkably long, non-Markovian sequences consisting of repeats and mixtures of slow forward and turn bouts. Applied to a novel chemotaxis assay, BASS uncovers chemotactic strategies deployed by zebrafish to avoid aversive cues consisting of sequences of fast large-angle turns and burst swims. In a simulated dataset of soaring gliders climbing thermals, BASS finds the spiraling patterns characteristic of soaring behaviour. In both cases, BASS succeeds in identifying rare action sequences in the behaviour deployed by freely moving animals. BASS can be easily incorporated into the pipelines of existing behavioural analyses across diverse species, and even more broadly used as a generic algorithm for pattern recognition in low-dimensional sequential data. 
    more » « less
  5. The multiple immunity responses exhibited in the population and co-circulating variants documented during pandemics show a high potential to generate diverse long-term epidemiological scenarios. Transmission variability, immune uncertainties and human behaviour are crucial features for the predictability and implementation of effective mitigation strategies. Nonetheless, the effects of individual health incentives on disease dynamics are not well understood. We use a behavioural-immuno-epidemiological model to study the joint evolution of human behaviour and epidemic dynamics for different immunity scenarios. Our results reveal a trade-off between the individuals’ immunity levels and the behavioural responses produced. We find that adaptive human behaviour can avoid dynamical resonance by avoiding large outbreaks, producing subsequent uniform outbreaks. Our forward-looking behaviour model shows an optimal planning horizon that minimizes the epidemic burden by balancing the individual risk–benefit trade-off. We find that adaptive human behaviour can compensate for differential immunity levels, equalizing the epidemic dynamics for scenarios with diverse underlying immunity landscapes. Our model can adequately capture complex empirical behavioural dynamics observed during pandemics. We tested our model for different US states during the COVID-19 pandemic. Finally, we explored extensions of our modelling framework that incorporate the effects of lockdowns, the emergence of a novel variant, prosocial attitudes and pandemic fatigue. 
    more » « less