skip to main content


Title: The Performance of LSTM and BiLSTM in Forecasting Time Series
Machine and deep learning-based algorithms are the emerging approaches in addressing prediction problems in time series. These techniques have been shown to produce more accurate results than conventional regression-based modeling. It has been reported that artificial Recurrent Neural Networks (RNN) with memory, such as Long Short-Term Memory (LSTM), are superior compared to Autoregressive Integrated Moving Average (ARIMA) with a large margin. The LSTM-based models incorporate additional “gates” for the purpose of memorizing longer sequences of input data. The major question is that whether the gates incorporated in the LSTM architecture already offers a good prediction and whether additional training of data would be necessary to further improve the prediction. Bidirectional LSTMs (BiLSTMs) enable additional training by traversing the input data twice (i.e., 1) left-to-right, and 2) right-to-left). The research question of interest is then whether BiLSTM, with additional training capability, outperforms regular unidirectional LSTM. This paper reports a behavioral analysis and comparison of BiLSTM and LSTM models. The objective is to explore to what extend additional layers of training of data would be beneficial to tune the involved parameters. The results show that additional training of data and thus BiLSTM-based modeling offers better predictions than regular LSTM-based models. More specifically, it was observed that BiLSTM models provide better predictions compared to ARIMA and LSTM models. It was also observed that BiLSTM models reach the equilibrium much slower than LSTM-based models.  more » « less
Award ID(s):
1821560 1723765
NSF-PAR ID:
10186554
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE International Conference on Big Data (Big Data)
Page Range / eLocation ID:
3285 to 3292
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Forecasting time series data is an important subject in economics, business, and finance. Traditionally, there are several techniques to effectively forecast the next lag of time series data such as univariate Autoregressive (AR), univariate Moving Average (MA), Simple Exponential Smoothing (SES), and more notably Autoregressive Integrated Moving Average (ARIMA) with its many variations. In particular, ARIMA model has demonstrated its outperformance in precision and accuracy of predicting the next lags of time series. With the recent advancement in computational power of computers and more importantly development of more advanced machine learning algorithms and approaches such as deep learning, new algorithms are developed to analyze and forecast time series data. The research question investigated in this article is that whether and how the newly developed deep learning-based algorithms for forecasting time series data, such as “Long Short-Term Memory (LSTM)”, are superior to the traditional algorithms. The empirical studies conducted and reported in this article show that deep learning-based algorithms such as LSTM outperform traditional-based algorithms such as ARIMA model. More specifically, the average reduction in error rates obtained by LSTM was between 84 - 87 percent when compared to ARIMA indicating the superiority of LSTM to ARIMA. Furthermore, it was noticed that the number of training times, known as “epoch” in deep learning, had no effect on the performance of the trained forecast model and it exhibited a truly random behavior. 
    more » « less
  2. null (Ed.)
    Basin-centric long short-term memory (LSTM) network models have recently been shown to be an exceptionally powerful tool for stream temperature (Ts) temporal prediction (training in one period and making predictions for another period at the same sites). However, spatial extrapolation is a well-known challenge to modeling Ts and it is uncertain how an LSTM-based daily Ts model will perform in unmonitored or dammed basins. Here we compiled a new benchmark dataset consisting of >400 basins across the contiguous United States in different data availability groups (DAG, meaning the daily sampling frequency) with or without major dams and studied how to assemble suitable training datasets for predictions in basins with or without temperature monitoring. For prediction in unmonitored basins (PUB), LSTM produced an RMSE of 1.129 °C and R2 of 0.983. While these metrics declined from LSTM's temporal prediction performance, they far surpassed traditional models' PUB values, and were competitive with traditional models' temporal prediction on calibrated sites. Even for unmonitored basins with major reservoirs, we obtained a median RMSE of 1.202°C and an R2 of 0.984. For temporal prediction, the most suitable training set was the matching DAG that the basin could be grouped into, e.g., the 60% DAG for a basin with 61% data availability. However, for PUB, a training dataset including all basins with data is consistently preferred. An input-selection ensemble moderately mitigated attribute overfitting. Our results indicate there are influential latent processes not sufficiently described by the inputs (e.g., geology, wetland covers), but temporal fluctuations are well predictable, and LSTM appears to be a highly accurate Ts modeling tool even for spatial extrapolation. 
    more » « less
  3. Network slicing will allow 5G network operators to o�er a diverse set of services over a shared physical infrastructure. We focus on supporting the operation of the Radio Access Network (RAN) slice broker, which maps slice requirements into allocation of Physical Resource Blocks (PRBs). We �rst develop a new metric, REVA, based on the number of PRBs available to a single Very Active bearer. REVA is independent of channel conditions and allows easy derivation of an individual wireless link’s throughput. In order for the slice broker to e�ciently utilize the RAN, there is a need for reliable and short term prediction of resource usage by a slice. To support such prediction, we construct an LTE testbed and develop custom additions to the scheduler. Using data collected from the testbed, we compute REVA and develop a realistic time series prediction model for REVA. Speci�cally, we present the X-LSTM prediction model, based upon Long Short-Term Memory (LSTM) neural networks. Evaluated with data collected in the testbed, X-LSTM outperforms Autoregressive Integrated Moving Average Model (ARIMA) and LSTM neural networks by up to 31%. X-LSTM also achieves over 91% accuracy in predicting REVA. By using X-LSTM to predict future usage, a slice broker is more adept to provision a slice and reduce over-provisioning and SLA violation costs by more than 10% in comparison to LSTM and ARIMA. 
    more » « less
  4. Model compression is significant for the wide adoption of Recurrent Neural Networks (RNNs) in both user devices possessing limited resources and business clusters requiring quick responses to large-scale service requests. This work aims to learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes of basic structures within LSTM units, including input updates, gates, hidden states, cell states and outputs. Independently reducing the sizes of basic structures can result in inconsistent dimensions among them, and consequently, end up with invalid LSTM units. To overcome the problem, we propose Intrinsic Sparse Structures (ISS) in LSTMs. Removing a component of ISS will simultaneously decrease the sizes of all basic structures by one and thereby always maintain the dimension consistency. By learning ISS within LSTM units, the obtained LSTMs remain regular while having much smaller basic structures. Based on group Lasso regularization, our method achieves 10:59 speedup without losing any perplexity of a language modeling of Penn TreeBank dataset. It is also successfully evaluated through a compact model with only 2:69M weights for machine Question Answering of SQuAD dataset. Our approach is successfully extended to non-LSTM RNNs, like Recurrent Highway Networks (RHNs). Our source code is available. 
    more » « less
  5. Abstract

    This study examines whether deep learning models can produce reliable future projections of streamflow under warming. We train a regional long short‐term memory network (LSTM) to daily streamflow in 15 watersheds in California and develop three process models (HYMOD, SAC‐SMA, and VIC) as benchmarks. We force all models with scenarios of warming and assess their hydrologic response, including shifts in the hydrograph and total runoff ratio. All process models show a shift to more winter runoff, reduced summer runoff, and a decline in the runoff ratio due to increased evapotranspiration. The LSTM predicts similar hydrograph shifts but in some watersheds predicts an unrealistic increase in the runoff ratio. We then test two alternative versions of the LSTM in which process model outputs are used as either additional training targets (i.e., multi‐output LSTM) or input features. Results indicate that the multi‐output LSTM does not correct the unrealistic streamflow projections under warming. The hybrid LSTM using estimates of evapotranspiration from SAC‐SMA as an additional input feature produces more realistic streamflow projections, but this does not hold for VIC or HYMOD. This suggests that the hybrid method depends on the fidelity of the process model. Finally, we test climate change responses under an LSTM trained to over 500 watersheds across the United States and find more realistic streamflow projections under warming. Ultimately, this work suggests that hybrid modeling may support the use of LSTMs for hydrologic projections under climate change, but so may training LSTMs to a large, diverse set of watersheds.

     
    more » « less