skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep learning approaches for improving prediction of daily stream temperature in data‐scarce, unmonitored, and dammed basins
Basin-centric long short-term memory (LSTM) network models have recently been shown to be an exceptionally powerful tool for stream temperature (Ts) temporal prediction (training in one period and making predictions for another period at the same sites). However, spatial extrapolation is a well-known challenge to modeling Ts and it is uncertain how an LSTM-based daily Ts model will perform in unmonitored or dammed basins. Here we compiled a new benchmark dataset consisting of >400 basins across the contiguous United States in different data availability groups (DAG, meaning the daily sampling frequency) with or without major dams and studied how to assemble suitable training datasets for predictions in basins with or without temperature monitoring. For prediction in unmonitored basins (PUB), LSTM produced an RMSE of 1.129 °C and R2 of 0.983. While these metrics declined from LSTM's temporal prediction performance, they far surpassed traditional models' PUB values, and were competitive with traditional models' temporal prediction on calibrated sites. Even for unmonitored basins with major reservoirs, we obtained a median RMSE of 1.202°C and an R2 of 0.984. For temporal prediction, the most suitable training set was the matching DAG that the basin could be grouped into, e.g., the 60% DAG for a basin with 61% data availability. However, for PUB, a training dataset including all basins with data is consistently preferred. An input-selection ensemble moderately mitigated attribute overfitting. Our results indicate there are influential latent processes not sufficiently described by the inputs (e.g., geology, wetland covers), but temporal fluctuations are well predictable, and LSTM appears to be a highly accurate Ts modeling tool even for spatial extrapolation.  more » « less
Award ID(s):
1940190
PAR ID:
10299543
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Hydrological Processes
ISSN:
0885-6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. As a genre of physics-informed machine learning, differentiable process-based hydrologic models (abbreviated as δ or delta models) with regionalized deep-network-based parameterization pipelines were recently shown to provide daily streamflow prediction performance closely approaching that of state-of-the-art long short-term memory (LSTM) deep networks. Meanwhile, δ models provide a full suite of diagnostic physical variables and guaranteed mass conservation. Here, we ran experiments to test (1) their ability to extrapolate to regions far from streamflow gauges and (2) their ability to make credible predictions of long-term (decadal-scale) change trends. We evaluated the models based on daily hydrograph metrics (Nash–Sutcliffe model efficiency coefficient, etc.) and predicted decadal streamflow trends. For prediction in ungauged basins (PUB; randomly sampled ungauged basins representing spatial interpolation), δ models either approached or surpassed the performance of LSTM in daily hydrograph metrics, depending on the meteorological forcing data used. They presented a comparable trend performance to LSTM for annual mean flow and high flow but worse trends for low flow. For prediction in ungauged regions (PUR; regional holdout test representing spatial extrapolation in a highly data-sparse scenario), δ models surpassed LSTM in daily hydrograph metrics, and their advantages in mean and high flow trends became prominent. In addition, an untrained variable, evapotranspiration, retained good seasonality even for extrapolated cases. The δ models' deep-network-based parameterization pipeline produced parameter fields that maintain remarkably stable spatial patterns even in highly data-scarce scenarios, which explains their robustness. Combined with their interpretability and ability to assimilate multi-source observations, the δ models are strong candidates for regional and global-scale hydrologic simulations and climate change impact assessment. 
    more » « less
  2. null (Ed.)
    Stream water temperature (Ts) is a variable of critical importance for aquatic ecosystem health. Ts is strongly affected by groundwater-surface water interactions which can be learned from streamflow records, but previously such information was challenging to effectively absorb with process-based models due to parameter equifinality. Based on the long short-term memory (LSTM) deep learning architecture, we developed a basin-centric lumped daily mean Ts model, which was trained over 118 data-rich basins with no major dams in the conterminous United States, and showed strong results. At a national scale, we obtained a median root-mean-square error (RMSE) of 0.69oC, Nash-Sutcliffe model efficiency coefficient (NSE) of 0.985, and correlation of 0.994, which are marked improvements over previous values reported in literature. The addition of streamflow observations as a model input strongly elevated the performance of this model. In the absence of measured streamflow, we showed that a two-stage model can be used where simulated streamflow from a pre-trained LSTM model (Qsim) still benefits the Ts model, even though no new information was brought directly in the inputs of the Ts model; the model indirectly used information learned from streamflow observations provided during the training of Qsim, potentially to improve internal representation of physically meaningful variables. Our results indicate that strong relationships exist between basin-averaged forcing variables, catchment attributes, and Ts that can be simulated by a single model trained by data on the continental scale. 
    more » « less
  3. Excess riverine nitrate causes downstream eutrophication, notably in the Gulf of Mexico where hypoxia is linked to nutrient-rich discharge from the Mississippi River Basin (MRB). We developed a long short-term memory (LSTM) model using high-frequency sensor data from across the conterminous US to predict daily nitrate concentrations, achieving strong temporal validation performance (median KGE = 0.60). Spatial validation—or prediction in unmonitored basins—yielded lower performance for nitrate concentration (median KGE = 0.18). Nonetheless, spatial validation was crucial in quantifying the impact of current data gaps and guiding the model's targeted application to the MRB where spatial validation performance was stronger (median KGE = 0.34). Modeling results for the MRB from 1980 to 2022 showed relatively low riverine nitrate export (19 ± 4% of surplus), indicating large-scale retention of surplus nitrate within the MRB. Interannual nitrate yields varied significantly, especially in Midwestern states like Iowa, where wet-year export fractions (42 ± 24%) far exceeded dry year export (6 ± 6%), suggesting increased hydrologic connectivity and remobilization of legacy nitrogen. Further evidence of legacy nitrate remobilization was noted in a subset of Midwestern basins where, on occasion, annual surplus export fractions exceeded 100%. Interpretable Shapley values identified key spatial drivers influencing mean nitrate concentrations—tile drainage, roadway density, wetland cover—and quantitative, non-linear thresholds in their influence, offering management targets. This study leverages machine learning and aquatic sensing to provide improved spatiotemporal predictions and insights into nitrate drivers, thresholds, and legacy impacts, offering valuable information for targeted nutrient management strategies in the MRB. 
    more » « less
  4. Accurate streamflow prediction is critical for ensuring water supply and detecting floods, while also providing essential hydrological inputs for other scientific models in fields such as climate and agriculture.Recently, deep learning models have been shown to achieve state-of-the-art regionalization performance by building a global hydrologic model. These models predict streamflow given catchment physical characteristics and weather forcing data.However, these models are only focused on gauged basins and cannot adapt to ungaugaed basins, i.e., basins without training data. Prediction in Ungauged Basins (PUB) is considered one of the most important challenges in hydrology, as most basins in the United States and around the world have no observations. In this work, we propose a meta-transfer learning approach by enhancing imperfect physics equations that facilitate model adaptation. Intuitively, physical equations can often be used to regularize deep learning models to achieve robust regionalization performance under gauged scenarios, but they can be inaccurate due to the simplified representation of physics. We correct such uncertainty in physical equation by residual approximation and let these corrected equations guide the model training process. We evaluated the proposed method for predicting daily streamflow on the catchment attributes and meteorology for large-sample studies (CAMELS) dataset. The experiment results on hydrological data over 19 years demonstrate the effectiveness of the proposed method in ungauged scenarios. 
    more » « less
  5. Abstract The Ensemble Streamflow Prediction (ESP) framework combines a probabilistic forecast structure with process‐based models for water supply predictions. However, process‐based models require computationally intensive parameter estimation, increasing uncertainties and limiting usability. Motivated by the strong performance of deep learning models, we seek to assess whether the Long Short‐Term Memory (LSTM) model can provide skillful forecasts and replace process‐based models within the ESP framework. Given challenges inimplicitlycapturing snowpack dynamics within LSTMs for streamflow prediction, we also evaluated the added skill ofexplicitlyincorporating snowpack information to improve hydrologic memory representation. LSTM‐ESPs were evaluated under four different scenarios: one excluding snow and three including snow with varied snowpack representations. The LSTM models were trained using information from 664 GAGES‐II basins during WY1983–2000. During a testing period, WY2001–2010, 80% of basins exhibited Nash‐Sutcliffe Efficiency (NSE) above 0.5 with a median NSE of around 0.70, indicating satisfactory utility in simulating seasonal water supply. LSTM‐ESP forecasts were then tested during WY2011–2020 over 76 western US basins with operational Natural Resources Conservation Services (NRCS) forecasts. A key finding is that in high snow regions, LSTM‐ESP forecasts using simplified ablation assumptions performed worse than those excluding snow, highlighting that snow data do not consistently improve LSTM‐ESP performance. However, LSTM‐ESP forecasts that explicitly incorporated past years' snow accumulation and ablation performed comparably to NRCS forecasts and better than forecasts excluding snow entirely. Overall, integrating deep learning within an ESP framework shows promise and highlights important considerations for including snowpack information in forecasting. 
    more » « less