Educational data mining research has demonstrated that the large volume of learning data collected by modern e-learning systems could be used to recognize student behavior patterns and group students into cohorts with similar behavior. However, few attempts have been done to connect and compare behavioral patterns with known dimensions of individual differences. To what extent learner behavior is defined by known individual differences? Which of them could be a better predictor of learner engagement and performance? Could we use behavior patterns to build a data-driven model of individual differences that could be more useful for predicting critical outcomes of the learning process than traditional models? Our paper attempts to answer these questions using a large volume of learner data collected in an online practice system. We apply a sequential pattern mining approach to build individual models of learner practice behavior and reveal latent student subgroups that exhibit considerably different practice behavior. Using these models we explored the connections between learner behavior and both, the incoming and outgoing parameters of the learning process. Among incoming parameters we examined traditionally collected individual differences such as self-esteem, gender, and knowledge monitoring skills. We also attempted to bridge the gap between cluster-based behavior pattern models and traditional scale-based models of individual differences by quantifying learner behavior on a latent data-driven scale. Our research shows that this data-driven model of individual differences performs significantly better than traditional models of individual differences in predicting important parameters of the learning process, such as performance and engagement.
more »
« less
Detecting Trait versus Performance Student Behavioral Patterns Using Discriminative Non-Negative Matrix Factorization
Recent studies have shown that students follow stable behavioral patterns while learning in online educational systems. These behavioral patterns can further be used to group the students into different clusters. However, as these clusters include both high- and low-performance students, the relation between the behavioral patterns and student performance is yet to be clarified. In this work, we study the relationship between students’ learning behaviors and their performance, in a self-organized online learning system that allows them to freely practice with various problems and worked examples. We represent each student’s behavior as a vector of highsupport sequential micro-patterns. Then, we discover both the prevalent behavioral patterns in each group and the shared patterns across groups using discriminative non-negative matrix factorization. Our experiments show that we can successfully detect such common and specific patterns in students’ behavior that can be further interpreted into student learning behavior trait patterns and performance patterns.
more »
« less
- Award ID(s):
- 1755910
- PAR ID:
- 10187003
- Date Published:
- Journal Name:
- The Thirty-Third International Flairs Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hawkes processes have been shown to be efficient in modeling bursty sequences in a variety of applications, such as finance and social network activity analysis. Traditionally, these models parameterize each process independently and assume that the history of each point process can be fully observed. Such models could however be inefficient or even prohibited in certain real-world applications, such as in the field of education, where such assumptions are violated. Motivated by the problem of detecting and predicting student procrastination in students Massive Open Online Courses (MOOCs) with missing and partially observed data, in this work, we propose a novel personalized Hawkes process model (RCHawkes-Gamma) that discovers meaningful student behavior clusters by jointly learning all partially observed processes simultaneously, without relying on auxiliary features. Our experiments on both synthetic and real-world education datasets show that RCHawkes-Gamma can effectively recover student clusters and their temporal procrastination dynamics, resulting in better predictive performance of future student activities. Our further analyses of the learned parameters and their association with student delays show that the discovered student clusters unveil meaningful representations of various procrastination behaviors in students.more » « less
-
null (Ed.)Modern online learning platforms offer a wealth of learning content while leaving the choice of content for study and practice to the learner. Recent work has demonstrated that many students use inefficient learning strategies that lead to lower performance in this context. The ability to detect inefficient learning behavior by monitoring learning data opens a way to timely intervention that could lead to better learning and performance. In this work, we propose SB-DNMF, a structure-based discriminative non-negative matrix factorization model aimed to distinguish between common and distinct learning behavior patterns of low- and high-learning gain students. Our model can discover latent groups of students' behavioral micro-patterns while accounting for the structural similarities between these micro-patterns based upon a weighted edit-distance measure. Our experiments demonstrate that SB-DNMF can find meaningful latent factors that are associated with students' learning gain and can cluster the behavioral patterns into common (trait), and performance-related groups.more » « less
-
Understanding student practice behavior and its connection to their learning is essential for effective recommender systems that provide personalized learning support. In this study, we apply a sequential pattern mining approach to analyze student practice behavior in a practice system for introductory Python programming. Our goal is to identify different types of practice behavior and connect them to student performance. We examine two types of practice sequences: (1) by login session and (2) by learning topic. For each sequence type, we use SPAM (Sequential PAttern Mining) to identify the most frequent micro-patterns and build behavior profiles of individual learners as vectors of micro-pattern frequencies observed in their behavior. We confirm that these vectors are stable for both sequence types (p < 0.03 for session sequences and p < 0.003 for topic sequences). Using the vectors, we perform K-means clustering where we identify two practice behaviors: example explorers and persistent finishers. We repeat this experiment using different coding approaches for student sequences and obtain similar clusters. Our results suggest that example explorers and persistent finishers might represent two typical types of divergent student behaviors in a programming practice system. Finally, to better understand the relationship between students' background knowledge, learning outcomes, and practice behavior, we perform statistical analyses to assess the significance of the associations among pre-test scores, cluster assignments, and final course grades.more » « less
-
Recent studies of student problem-solving behavior have shown stable behavior patterns within student groups. In this work, we study patterns of student behavior in a richer self-organized practice context where student worked with a combination of problems to solve and worked examples to study. We model student behavior in the form of vectors of micro-patterns and examine student behavior stability in various ways via these vectors. To discover and examine global behavior patterns associated with groups of students, we cluster students according to their behavior patterns and evaluate these clusters in accordance with student performance.more » « less
An official website of the United States government

