skip to main content


Title: Annotated Examples and Parameterized Exercises: Analyzing Students’ Behavior Patterns
Recent studies of student problem-solving behavior have shown stable behavior patterns within student groups. In this work, we study patterns of student behavior in a richer self-organized practice context where student worked with a combination of problems to solve and worked examples to study. We model student behavior in the form of vectors of micro-patterns and examine student behavior stability in various ways via these vectors. To discover and examine global behavior patterns associated with groups of students, we cluster students according to their behavior patterns and evaluate these clusters in accordance with student performance.  more » « less
Award ID(s):
1755910
NSF-PAR ID:
10176148
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of artificial intelligence in education
Volume:
11625
ISSN:
1043-1020
Page Range / eLocation ID:
308-319
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent studies have shown that students follow stable behavioral patterns while learning in online educational systems. These behavioral patterns can further be used to group the students into different clusters. However, as these clusters include both high- and low-performance students, the relation between the behavioral patterns and student performance is yet to be clarified. In this work, we study the relationship between students’ learning behaviors and their performance, in a self-organized online learning system that allows them to freely practice with various problems and worked examples. We represent each student’s behavior as a vector of highsupport sequential micro-patterns. Then, we discover both the prevalent behavioral patterns in each group and the shared patterns across groups using discriminative non-negative matrix factorization. Our experiments show that we can successfully detect such common and specific patterns in students’ behavior that can be further interpreted into student learning behavior trait patterns and performance patterns. 
    more » « less
  2. In recent years, research has associated grade point average (GPA) with a variety of student outcomes during their undergraduate careers. The studies link higher GPAs to students being more likely to graduate in their major, while lower GPAs have been linked to students switching majors or leaving the institution. Further research, which focuses on how Black female and male students remain successful in different engineering degrees, is necessary to identify the underlying elements contributing to their entrance into and exit from engineering disciplines. This quantitative examination of trends among the GPAs of Black women and men is part of a larger NSF-funded mixed-methods study that includes in-depth student interviews of Black students who persisted in and switched from ME. In this quantitative paper, we examine the GPA patterns of Black students in Mechanical Engineering (ME). Students who have ever enrolled in ME have four potential, mutually exclusive, outcomes: 1) they can persist for 12 semesters without graduating; 2) they can graduate in ME within 12 semesters; 3) they can switch to another major; or 4) they can leave school. In this research, we identify the most common GPA patterns associated with graduated ME students. We hypothesize a relationship between distinct GPA patterns and whether a student persists in ME, graduates in ME, switches away from ME, or leaves the institution altogether. This quantitative investigation uses the Multiple-Institution Database for Investigating Engineering Longitudinal Development (MIDFIELD) to collect the cumulative GPA of ME students at each term. We use a functional cluster analysis approach to group similar patterns. First, a function is fit to each student record. Then a cluster analysis is conducted on the function parameters to identify natural groupings in the data. Once students are grouped according to their GPA profile, we examine the other characteristics and outcomes of the group. We present a visual quantitative analysis of the patterns in the GPAs of Black women and men who enroll in ME. Clustering analysis suggests that first-time-in-college (FTIC) Black female students in ME who graduated have a higher proportion of students in the higher GPA clusters than the proportion of FTIC Black male students who graduated in ME. A higher proportion of the male student population is clustered in the lower GPA cluster groups as compared to women in the lower GPA cluster groups. A higher proportion of students who graduated are in the higher GPA clusters than the proportion of graduated students in the lower GPA clusters. 
    more » « less
  3. Mitrovic, A. ; & Bosch, N. (Ed.)
    Working collaboratively in groups can positively impact performance and student engagement. Intelligent social agents can provide a source of personalized support for students, and their benefits likely extend to collaborative settings, but it is difficult to determine how these agents should interact with students. Reinforcement learning (RL) offers an opportunity for adapting the interactions between the social agent and the students to better support collaboration and learning. However, using RL in education with social agents typically involves training using real students. In this work, we train an RL agent in a high-quality simulated environment to learn how to improve students’ collaboration. Data was collected during a pilot study with dyads of students who worked together to tutor an intelligent teachable robot. We explore the process of building an environment from the data, training a policy, and the impact of the policy on different students, compared to various baselines. 
    more » « less
  4. Despite efforts to attract and retain more students in engineering and computer science — particularly women and students from underrepresented groups — diversity within these educational programs and the technical workforce remains stubbornly low. Research shows that undergraduate retention, persistence, and success in college is affected by several factors, including sense of belonging, task value, positive student-faculty interactions, school connectedness, and student engagement [1], [2]. Kuh [1] found that improvement in persistence, performance, and graduation for students in college were correlated to students’ level of participation in particular activities known as high impact educational practices (HIEP). HIEP include, among others, culminating experiences, learning communities, service learning, study abroad, and undergraduate research; Kuh [1] concluded that these activities may be effective at promoting overall student success. Kuh [1] and others [3] further hypothesized that participation in HIEP may especially benefit students from non-majority groups. Whether and how engineering and computer science students benefit from participating in HIEP and whether students from non-majority groups have access to HIEP activities, however, remain as questions to investigate. In this project, we examine engineering and computer science student participation in HIEP at two public land grant institutions. In this study, we seek to understand how and why students participate in HIEP and how participation affects their persistence and success in engineering and computer science majors. Set within the rural, public land grant university context, this study conceptualizes diversity in a broad sense and includes women, members of underrepresented racial and ethnic groups, first generation college students, adult learners, and nontraditional student as groups contributing to the diversity of academic programs and the technical workforce. 
    more » « less
  5. As computer-focused policies and trends become more popular in schools, more students access math curriculum online. While computer-based programs may be responsive to some student input, their algorithmic basis can make it more difficult for them to be prepared for divergent student thinking, especially in comparison to a teacher. Consider programs that assess student work by judging how well it matches pre-set answers. Unless designed and enacted in classrooms with care, computer-based curriculum materials might encourage students to think about mathematics in pre-determined ways. How do students approach the process of mathematics while using online materials, especially in terms of engaging in original thought? Drawing on Pickering’s (1995) dance of agency and Sinclair’s (2001) conception of students as path-finders or track-takers, I define two modes of mathematical behavior: trail-taking and bushwhacking. While trail-taking, students follow an established approach, often relying on Pickering’s (1995) disciplinary agency, wherein the mathematics “leads [them] through a series of manipulations” (p. 115). The series of manipulations can be seen as a trail that a student may choose to follow. Bushwhacking, on the other hand, refers to actions a student takes of their own invention. It is possible that, unknown to the student, these actions have been taken before by others. In bushwhacking, the student possesses agency, which Pickering (1995) describes as active (rather than passive) and as hallmarked by “choice and discretion” (p. 117). In this study, students worked in several dynamic geometric environments (DGEs) during a geometry lesson about the midline theorem. The lesson was originally recorded as part of a larger study designing mathematically captivating lessons. Students accessed both problems and online addresses for corresponding DGEs via a printed packet. Students interacted with the DGEs on individual laptops, but were seated in groups of three or four. Passages of group conversations in which students transitioned between trail-taking and bushwhacking were selected for closer analysis, which involved identifying evidence of each mode and highlighting the curricular or social forces that may have contributed to shifts between modes. Of particular interest were episodes in which students asked one another to share results, which led to students reconsidering previously set approaches, and episodes in which students interacted with DGEs containing a relatively high proportion of drag-able components, which corresponded to some students working in bushwhacking mode, spontaneously suggesting and revising approaches for manipulating the DGE (e.g., “unless you make this parallel to the bottom, but I don’t think you... yes you can.”). Both types of episodes were found in multiple groups’ conversations. Further analysis of student interactions with tasks, especially with varying levels of student control and sharing, could serve to inform future computer-based task design aimed to encourage students to productively engage in bushwhacking while problem-solving. 
    more » « less