skip to main content


Title: Fine-Grained Isolation for Scalable, Dynamic, Multi-tenant Edge Clouds
5G edge clouds promise a pervasive computational infrastructure a short network hop away, enabling a new breed of smart devices that respond in real-time to their physical surroundings. Unfortunately, today’s operating system designs fail to meet the goals of scalable isolation, dense multi-tenancy, and high performance needed for such applications. In this paper we introduce EdgeOS that emphasizes system-wide isolation as fine-grained as per-client. We propose a novel memory movement accelerator architecture that employs data copying to enforce strong isolation without performance penalties. To support scalable isolation, we introduce a new protection domain implementation that offers lightweight isolation, fast startup and low latency even under high churn. We implement EdgeOS in a microkernel based OS and demonstrate running high scale network middleboxes using the Click software router and endpoint applications such as memcached, a TLS proxy, and neural network inference. We reduce startup latency by 170X compared to Linux processes, and improve latency by three orders of magnitude when running 300 to 1000 edge-cloud memcached instances on one server.  more » « less
Award ID(s):
1814234 1837382 1815690
NSF-PAR ID:
10187005
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Usenix Annual Technical Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Serverless computing platforms have gained popularity because they allow easy deployment of services in a highly scalable and cost-effective manner. By enabling just-in-time startup of container-based services, these platforms can achieve good multiplexing and automatically respond to traffic growth, making them particularly desirable for edge cloud data centers where resources are scarce. Edge cloud data centers are also gaining attention because of their promise to provide responsive, low-latency shared computing and storage resources. Bringing serverless capabilities to edge cloud data centers must continue to achieve the goals of low latency and reliability. The reliability guarantees provided by serverless computing however are weak, with node failures causing requests to be dropped or executed multiple times. Thus serverless computing only provides a best effort infrastructure, leaving application developers responsible for implementing stronger reliability guarantees at a higher level. Current approaches for providing stronger semantics such as “exactly once” guarantees could be integrated into serverless platforms, but they come at high cost in terms of both latency and resource consumption. As edge cloud services move towards applications such as autonomous vehicle control that require strong guarantees for both reliability and performance, these approaches may no longer be sufficient. In this paper we evaluate the latency, throughput, and resource costs of providing different reliability guarantees, with a focus on these emerging edge cloud platforms and applications. 
    more » « less
  2. Serverless computing platforms have gained popularity because they allow easy deployment of services in a highly scalable and cost-effective manner. By enabling just-in-time startup of container-based services, these platforms can achieve good multiplexing and automatically respond to traffic growth, making them particularly desirable for edge cloud data centers where resources are scarce. Edge cloud data centers are also gaining attention because of their promise to provide responsive, low-latency shared computing and storage resources. Bringing serverless capabilities to edge cloud data centers must continue to achieve the goals of low latency and reliability. The reliability guarantees provided by serverless computing however are weak, with node failures causing requests to be dropped or executed multiple times. Thus serverless computing only provides a best effort infrastructure, leaving application developers responsible for implementing stronger reliability guarantees at a higher level. Current approaches for providing stronger semantics such as ``exactly once'' guarantees could be integrated into serverless platforms, but they come at high cost in terms of both latency and resource consumption. As edge cloud services move towards applications such as autonomous vehicle control that require strong guarantees for both reliability and performance, these approaches may no longer be sufficient. In this paper we evaluate the latency, throughput, and resource costs of providing different reliability guarantees, with a focus on these emerging edge cloud platforms and applications. 
    more » « less
  3. We introduce partially-stateful data-flow, a new streaming data-flow model that supports eviction and reconstruction of data-flow state on demand. By avoiding state explosion and supporting live changes to the data-flow graph, this model makes data-flow viable for building long-lived, low-latency applications, such as web applications. Our implementation, Noria, simplifies the backend infrastructure for read-heavy web applications while improving their performance. A Noria application supplies a relational schema and a set of parameterized queries, which Noria compiles into a data-flow program that pre-computes results for reads and incrementally applies writes. Noria makes it easy to write high-performance applications without manual performance tuning or complex-to-maintain caching layers. Partial statefulness helps Noria limit its in-memory state without prior data-flow systems’ restriction to windowed state, and helps Noria adapt its data-flow to schema and query changes while on-line. Unlike prior data-flow systems, Noria also shares state and computation across related queries, eliminating duplicate work. On a real web application’s queries, our prototype scales to 5× higher load than a hand-optimized MySQL baseline. Noria also outperforms a typical MySQL/memcached stack and the materialized views of a commercial database. It scales to tens of millions of reads and millions of writes per second over multiple servers, outperforming a state-of-the-art streaming data-flow system. ISBN 978-1-931971-47-8 
    more » « less
  4. We introduce partially-stateful data-flow, a new streaming data-flow model that supports eviction and reconstruction of data-flow state on demand. By avoiding state explosion and supporting live changes to the data-flow graph, this model makes data-flow viable for building long-lived, low-latency applications, such as web applications. Our implementation, Noria, simplifies the back-end infrastructure for read-heavy web applications while improving their performance. A Noria application supplies a relational schema and a set of parameterized queries, which Noria compiles into a data-flow program that pre-computes results for reads and incrementally applies writes. Noria makes it easy to write high-performance applications without manual performance tuning or complex-to-maintain caching layers. Partial statefulness helps Noria limit its in-memory state without prior data-flow systems' restriction to windowed state, and helps Noria adapt its data-flow to schema and query changes while on-line. Unlike prior data-flow systems, Noria also shares state and computation across related queries, eliminating duplicate work. On a real web application's queries, our prototype scales to 5x higher load than a hand-optimized MySQL baseline. Noria also outperforms a typical MySQL/memcached stack and the materialized views of a commercial database. It scales to tens of millions of reads and millions of writes per second over multiple servers, outperforming a state-of-the-art streaming data-flow system. 
    more » « less
  5. null (Ed.)
    Many Internet of Things (IoT) applications are time-critical and dynamically changing. However, traditional data processing systems (e.g., stream processing systems, cloud-based IoT data processing systems, wide-area data analytics systems) are not well-suited for these IoT applications. These systems often do not scale well with a large number of concurrently running IoT applications, do not support low-latency processing under limited computing resources, and do not adapt to the level of heterogeneity and dynamicity commonly present at edge environments. This suggests a need for a new edge stream processing system that advances the stream processing paradigm to achieve efficiency and flexibility under the constraints presented by edge computing architectures. We present \textsc{Dart}, a scalable and adaptive edge stream processing engine that enables fast processing of a large number of concurrent running IoT applications’ queries in dynamic edge environments. The novelty of our work is the introduction of a dynamic dataflow abstraction by leveraging distributed hash table (DHT) based peer-to-peer (P2P) overlay networks, which can automatically place, chain, and scale stream operators to reduce query latency, adapt to edge dynamics, and recover from failures. We show analytically and empirically that DART outperforms Storm and EdgeWise on query latency and significantly improves scalability and adaptability when processing a large number of real-world IoT stream applications' queries. DART significantly reduces application deployment setup times, becoming the first streaming engine to support DevOps for IoT applications on edge platforms. 
    more » « less