skip to main content

Title: Safe and Private Forward-Trading Platform for Transactive Microgrids
Power grids are evolving at an unprecedented pace due to the rapid growth of distributed energy resources (DER) in communities. These resources are very different from traditional power sources as they are located closer to loads and thus can significantly reduce transmission losses and carbon emissions. However, their intermittent and variable nature often results in spikes in the overall demand on distribution system operators (DSO). To manage these challenges, there has been a surge of interest in building decentralized control schemes, where a pool of DERs combined with energy storage devices can exchange energy locally to smooth fluctuations in net demand. Building a decentralized market for transactive microgrids is challenging because even though a decentralized system provides resilience, it also must satisfy requirements like privacy, efficiency, safety, and security, which are often in conflict with each other. As such, existing implementations of decentralized markets often focus on resilience and safety but compromise on privacy. In this paper, we describe our platform, called TRANSAX, which enables participants to trade in an energy futures market, which improves efficiency by finding feasible matches for energy trades, enabling DSOs to plan their energy needs better. TRANSAX provides privacy to participants by anonymizing their trading more » activity using a distributed mixing service, while also enforcing constraints that limit trading activity based on safety requirements, such as keeping planned energy flow below line capacity. We show that TRANSAX can satisfy the seemingly conflicting requirements of efficiency, safety, and privacy. We also provide an analysis of how much trading efficiency is lost. Trading efficiency is improved through the problem formulation which accounts for temporal flexibility, and system efficiency is improved using a hybrid-solver architecture. Finally, we describe a testbed to run experiments and demonstrate its performance using simulation results. « less
Authors:
; ; ; ; ;
Award ID(s):
1840052 1818901 1647015
Publication Date:
NSF-PAR ID:
10187030
Journal Name:
ACM transactions on cyberphysical systems
ISSN:
2378-9638
Sponsoring Org:
National Science Foundation
More Like this
  1. Power grids are undergoing major changes due to rapid growth in renewable energy and improvements in battery technology. Prompted by the increasing complexity of power systems, decentralized IoT solutions are emerging, which arrange local communities into transactive microgrids. The core functionality of these solutions is to provide mechanisms for matching producers with consumers while ensuring system safety. However, there are multiple challenges that these solutions still face: privacy, trust, and resilience. The privacy challenge arises because the time series of production and consumption data for each participant is sensitive and may be used to infer personal information. Trust is anmore »issue because a producer or consumer can renege on the promised energy transfer. Providing resilience is challenging due to the possibility of failures in the infrastructure that is required to support these market based solutions. In this paper, we develop a rigorous solution for transactive microgrids that addresses all three challenges by providing an innovative combination of MILP solvers, smart contracts, and publish-subscribe middleware within a framework of a novel distributed application platform, called Resilient Information Architecture Platform for Smart Grid. Towards this purpose, we describe the key architectural concepts, including fault tolerance, and show the trade-off between market efficiency and resource requirements.« less
  2. Power grids are undergoing major changes due to the rapid adoption of intermittent renewable energy resources and the increased availability of energy storage devices. These trends drive smart-grid operators to envision a future where peer-to-peer energy trading occurs within microgrids, leading to the development of Transactive Energy Systems. Blockchains have garnered significant interest from both academia and industry for their potential application in decentralized TES, in large part due to their high level of resilience. In this paper, we introduce a novel class of attacks against blockchain based TES, which target the gateways that connect market participants to the system.more »We introduce a general model of blockchain based TES and study multiple threat models and attack strategies. We also demonstrate the impact of these attacks using a testbed based on GridLAB-D and a private Ethereum network. Finally, we study how to mitigate these attack.« less
  3. Transactive energy systems (TES) are emerging as a transformative solution for the problems that distribution system operators face due to an increase in the use of distributed energy resources and rapid growth in scalability of managing active distribution system (ADS). On the one hand, these changes pose a decentralized power system control problem, requiring strategic control to maintain reliability and resiliency for the community and for the utility. On the other hand, they require robust financial markets while allowing participation from diverse prosumers. To support the computing and flexibility requirements of TES while preserving privacy and security, distributed software platformsmore »are required. In this paper, we enable the study and analysis of security concerns by developing Transactive Energy Security Simulation Testbed (TESST), a TES testbed for simulating various cyber attacks. In this work, the testbed is used for TES simulation with centralized clearing market, highlighting weaknesses in a centralized system. Additionally, we present a blockchain enabled decentralized market solution supported by distributed computing for TES, which on one hand can alleviate some of the problems that we identify, but on the other hand, may introduce newer issues. Future study of these differing paradigms is necessary and will continue as we develop our security simulation testbed.« less
  4. Transactive Energy (TE) is an emerging discipline that utilizes economic and control techniques for operating and managing the power grid effectively. Distributed Energy Resources (DERs) represent a fundamental shift away from traditionally centrally managed energy generation and storage to one that is rather distributed. However, integrating and managing DERs into the power grid is highly challenging owing to the TE implementation issues such as privacy, equity, efficiency, reliability, and security. The TE market structures allow utilities to transact (i.e., buy and sell) power services (production, distribution, and storage) from/to DER providers integrated as part of the grid. Flexible power pricingmore »in TE enables power services transactions to dynamically adjust power generation and storage in a way that continuously balances power supply and demand as well as minimize cost of grid operations. Therefore, it has become important to analyze various market models utilized in different TE applications for their impact on above implementation issues.In this demo, we show-case the Transactive Energy Simulation and Analysis Toolsuite (TE-SAT) with its three publicly available design studios for experimenting with TE markets. All three design studios are built using metamodeling tool called the Web-based Graphical Modeling Environment (WebGME). Using a Git-like storage and tracking backend server, WebGME enables multi-user editing on models and experiments using simply a web-browser. This directly facilitates collaboration among different TE stakeholders for developing and analyzing grid operations and market models. Additionally, these design studios provide an integrated and scalable cloud backend for running corresponding simulation experiments.« less
  5. This paper discusses a market-based pool strategy for a microgrid (MG) to optimally trade electric power in the distribution electricity market (DEM). The increasing penetration levels of distributed energy resources (DERs) and MGs in distribution system (DS) stress distribution system operator (DSO) and require higher levels of coordinated control strategies. The distribution system operator has limited visibility and control over such distributed resources. To reduce the complexity of the system and improve the efficiency of the electricity market operation, we propose a decentralized pool strategy for an MG to integrate with a distribution system through a market mechanism. A market-basedmore »interactions procedure between MGs and DS is developed for MGs as price-makers to find an optimal bidding/offering strategy efficiently. To achieve a market equilibrium among all entities, we initially cast this problem as a bi-level programming problem, in which the upper level is an MG optimal scheduling problem and the lower level presents a DEM clearing mechanism. The proposed bi-level model is converted to a single mix-integer model which is easier to solve. Uncertainties associated with MG's rivals' offers and demands' bids are considered in this problem. The solution results from a modified IEEE 33-Bus distribution system are presented and discussed. Finally, some conclusions are drawn and examined.« less