skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Cyber-Attacks and Mitigation in Blockchain Based Transactive Energy Systems
Power grids are undergoing major changes due to the rapid adoption of intermittent renewable energy resources and the increased availability of energy storage devices. These trends drive smart-grid operators to envision a future where peer-to-peer energy trading occurs within microgrids, leading to the development of Transactive Energy Systems. Blockchains have garnered significant interest from both academia and industry for their potential application in decentralized TES, in large part due to their high level of resilience. In this paper, we introduce a novel class of attacks against blockchain based TES, which target the gateways that connect market participants to the system. We introduce a general model of blockchain based TES and study multiple threat models and attack strategies. We also demonstrate the impact of these attacks using a testbed based on GridLAB-D and a private Ethereum network. Finally, we study how to mitigate these attack.  more » « less
Award ID(s):
1818901 1840052
PAR ID:
10155716
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
3rd IEEE International Conference on IndustrialCyber-Physical Systems (ICPS 2020)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transactive energy systems (TES) are emerging as a transformative solution for the problems that distribution system operators face due to an increase in the use of distributed energy resources and rapid growth in scalability of managing active distribution system (ADS). On the one hand, these changes pose a decentralized power system control problem, requiring strategic control to maintain reliability and resiliency for the community and for the utility. On the other hand, they require robust financial markets while allowing participation from diverse prosumers. To support the computing and flexibility requirements of TES while preserving privacy and security, distributed software platforms are required. In this paper, we enable the study and analysis of security concerns by developing Transactive Energy Security Simulation Testbed (TESST), a TES testbed for simulating various cyber attacks. In this work, the testbed is used for TES simulation with centralized clearing market, highlighting weaknesses in a centralized system. Additionally, we present a blockchain enabled decentralized market solution supported by distributed computing for TES, which on one hand can alleviate some of the problems that we identify, but on the other hand, may introduce newer issues. Future study of these differing paradigms is necessary and will continue as we develop our security simulation testbed. 
    more » « less
  2. Sural, Shamik ; Lu, Haibing (Ed.)
    Timed data release refers to protecting sensitive data that can be accessed only after a pre-determined amount of time has passed. While blockchain-based solutions for timed data release provide a promising approach for decentralizing the process, designing an attack-resilient timed-release service that is resilient to malicious adversaries in a blockchain network is inherently challenging. A timed-release service on a blockchain network is inevitably exposed to the risk of post-facto attacks where adversaries may launch attacks after the data is released in the blockchain network. Existing incentive-based solutions for timed data release in Ethereum blockchains guarantee protection under the assumption of a fully rational adversarial environment in which every peer acts rationally. However, these schemes fail invariably when even a single participating peer node in the protocol starts acting maliciously and deviates from the rational behavior. In this paper, we propose a systematic solution for attack-resilient and practical blockchain-based timed data release in a mixed adversarial environment, where both malicious adversaries and rational adversaries exist. We first propose an effective uncertainty-aware reputation measure to capture the behaviors of the peer involved in timed data release activities in the network. In light of such a measure, we present the design of a basic protocol that consists of two critical ingredients, namely reputation-aware peer recruitment and verifiable enforcement protocols. The former, prior to the start of the enforcement protocols, performs peer recruitment based on the reputation measure to make the design probabilistically attack-resilient to the post-facto attacks. The latter is responsible for contractually guarding the recruited peers at runtime by transparently reporting observed adversarial behaviors. However, the basic recruitment design is only aware of the reputation of the peers and it does not consider the working time schedule of the participating peers and as a result, it results in lower attack-resilience. To enhance the attack resilience further without impacting the verifiable enforcement protocols, we propose a temporal graph-based reputation-aware peer recruitment algorithm that carefully determines the peer recruitment plan to make the service more attack-resilient. In our proposed approach, we formally capture the timed data release service as a temporal graph and we develop a novel maximal attack-resilient path-finding algorithm on the temporal graph for the participating peers. We implement a prototype of the proposed approach using Smart Contracts and deploy it on the Ethereum official test network, Rinkeby. For extensively evaluating the proposed techniques, we perform simulation experiments to validate the effectiveness of the reputation-aware timed data release protocols as well as our proposed temporal-graph-based improvements. The results demonstrate the effectiveness and strong attack resilience of the proposed mechanisms and our approach incurs only a modest gas cost. 
    more » « less
  3. The Internet of Things (IoT) is a network of sensors that helps collect data 24/7 without human intervention. However, the network may suffer from problems such as the low battery, heterogeneity, and connectivity issues due to the lack of standards. Even though these problems can cause several performance hiccups, security issues need immediate attention because hackers access vital personal and financial information and then misuse it. These security issues can allow hackers to hijack IoT devices and then use them to establish a Botnet to launch a Distributed Denial of Service (DDoS) attack. Blockchain technology can provide security to IoT devices by providing secure authentication using public keys. Similarly, Smart Contracts (SCs) can improve the performance of the IoT–blockchain network through automation. However, surveyed work shows that the blockchain and SCs do not provide foolproof security; sometimes, attackers defeat these security mechanisms and initiate DDoS attacks. Thus, developers and security software engineers must be aware of different techniques to detect DDoS attacks. In this survey paper, we highlight different techniques to detect DDoS attacks. The novelty of our work is to classify the DDoS detection techniques according to blockchain technology. As a result, researchers can enhance their systems by using blockchain-based support for detecting threats. In addition, we provide general information about the studied systems and their workings. However, we cannot neglect the recent surveys. To that end, we compare the state-of-the-art DDoS surveys based on their data collection techniques and the discussed DDoS attacks on the IoT subsystems. The study of different IoT subsystems tells us that DDoS attacks also impact other computing systems, such as SCs, networking devices, and power grids. Hence, our work briefly describes DDoS attacks and their impacts on the above subsystems and IoT. For instance, due to DDoS attacks, the targeted computing systems suffer delays which cause tremendous financial and utility losses to the subscribers. Hence, we discuss the impacts of DDoS attacks in the context of associated systems. Finally, we discuss Machine-Learning algorithms, performance metrics, and the underlying technology of IoT systems so that the readers can grasp the detection techniques and the attack vectors. Moreover, associated systems such as Software-Defined Networking (SDN) and Field-Programmable Gate Arrays (FPGA) are a source of good security enhancement for IoT Networks. Thus, we include a detailed discussion of future development encompassing all major IoT subsystems. 
    more » « less
  4. null (Ed.)
    Blockchain technology has recently gained high popularity in data security, primarily to mitigate against data breach and manipulation. Since its inception in 2008, it has been applied in different areas mainly to maintain data integrity and consistency. Blockchain has been tailored to secure data due to its data immutability and distributive technology. Despite the high success rate in data security, the inability to identify compromised insider nodes is one of the significant problems encountered in blockchain architectures. A Blockchain network is made up of nodes that initiate, verify and validate transactions. If compromised, these nodes can manipulate submitted transactions, inject fake transactions, or retrieve unauthorized information that might eventually compromise the stored data's integrity and consistency. This paper proposes a novel method of detecting these compromised blockchain nodes using a server-side authentication process and thwart their activities before getting updated in the blockchain ledger. In evaluating the proposed system, we perform four common insider attacks, which fall under the following three categories: (1)Those attacks targeting the Blockchain to bring it down. (2) the attacks that attempt to inject fake data into the database. (3) The attacks that attempt to hijack or retrieve unauthorized data. We described how we implement the attacks and how our architecture detects them before they impact the network. Finally, we displayed the attack detection time for each attack and compared our approach with other existing methods. 
    more » « less
  5. While the blockchain technology provides strong cryptographic protection on the ledger and the system operations, the underlying blockchain networking remains vulnerable due to potential threats such as denial of service (DoS), Eclipse, spoofing, and Sybil attacks. Effectively detecting such malicious events should thus be an essential task for securing blockchain networks and services. Due to its importance, several studies investigated anomaly detection in Bitcoin and blockchain networks, but their analyses mainly focused on the blockchain ledger in the application context (e.g., transactions) and targets specific types of attacks (e.g., double-spending, deanonymization, etc). In this study, we present a security mechanism based on the analysis of blockchain network traffic statistics (rather than ledger data) to detect malicious events, through the functions of data collection and anomaly detection. The data collection engine senses the underlying blockchain traffic and generates multi-dimensional data streams in a periodic manner. The anomaly detection engine then detects anomalies from the created data instances based on semi-supervised learning, which is capable of detecting previously unseen patterns, and we introduce our profiling-based detection engine implemented on top of AutoEncoder (AE). Our experimental results support the effectiveness of the presented security mechanism for accurate, online detection of malicious events from blockchain networking traffic data. We also show further reduction in time complexity (up to 66.8% for training and 85.7% for testing), without any performance degradation using feature prioritization compared to the utilization of the entire features. 
    more » « less