Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Timely and accurate detection of events affecting the stability and reliability of power transmission systems is crucial for safe grid operation. This paper presents an efficient unsupervised machine-learning algorithm for event detection using a combination of discrete wavelet transform (DWT) and convolutional autoencoders (CAE) with synchrophasor phasor measurements. These measurements are collected from a hardware-in-the-loop testbed setup equipped with a digital real-time simulator. Using DWT, the detail coefficients of measurements are obtained. Next, the decomposed data is then fed into the CAE that captures the underlying structure of the transformed data. Anomalies are identified when significant errors are detected between input samples and their reconstructed outputs. We demonstrate our approach on the IEEE-14 bus system considering different events such as generator faults, line-to-line faults, line-to-ground faults, load shedding, and line outages simulated on a real-time digital simulator (RTDS). The proposed implementation achieves a classification accuracy of 97.7%, precision of 98.0%, recall of 99.5%, F1 Score of 98.7%, and proves to be efficient in both time and space requirements compared to baseline approaches.more » « less
-
Modern smart cities need smart transportation solutions to quickly detect various traffic emergencies and incidents in the city to avoid cascading traffic disruptions. To materialize this, roadside units and ambient transportation sensors are being deployed to collect speed data that enables the monitoring of traffic conditions on each road segment. In this paper, we first propose a scalable data-driven anomaly-based traffic incident detection framework for a city-scale smart transportation system. Specifically, we propose an incremental region growing approximation algorithm for optimal Spatio-temporal clustering of road segments and their data; such that road segments are strategically divided into highly correlated clusters. The highly correlated clusters enable identifying a Pythagorean Mean-based invariant as an anomaly detection metric that is highly stable under no incidents but shows a deviation in the presence of incidents. We learn the bounds of the invariants in a robust manner such that anomaly detection can generalize to unseen events, even when learning from real noisy data. Second, using cluster-level detection, we propose a folded Gaussian classifier to pinpoint the particular segment in a cluster where the incident happened in an automated manner. We perform extensive experimental validation using mobility data collected from four cities in Tennessee, compare with the state-of-the-art ML methods, to prove that our method can detect incidents within each cluster in real-time and outperforms known ML methods.more » « less
-
Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems. The goals of transportation agencies are two-fold: to monitor the general traffic conditions in the area of interest and to locate road segments under abnormal congestion states. Modeling congestion patterns can achieve these goals for citywide roadways, which amounts to learning the distribution of multivariate time series (MTS). However, existing works are either not scalable or unable to capture the spatial-temporal information in MTS simultaneously. To this end, we propose a principled and comprehensive framework consisting of a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies. Our approach first clusters segments in the feature space and then uses conditional normalizing flow to identify anomalous temporal snapshots at the cluster level in an unsupervised setting. Then, we identify anomalies at the segment level by using a kernel density estimator on the anomalous cluster. Extensive experiments on synthetic datasets show that our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score. We also use the generative model to sample labeled data, which can train classifiers in a supervised setting, alleviating the lack of labeled data for anomaly detection in sparse settings.more » « less
-
Modern smart cities are focusing on smart transportation solutions to detect and mitigate the effects of various traffic incidents in the city. To materialize this, roadside units and ambient trans-portation sensors are being deployed to collect vehicular data that provides real-time traffic monitoring. In this paper, we first propose a real-time data-driven anomaly-based traffic incident detection framework for a city-scale smart transportation system. Specifically, we propose an incremental region growing approximation algorithm for optimal Spatio-temporal clustering of road segments and their data; such that road segments are strategically divided into highly correlated clusters. The highly correlated clusters enable identifying a Pythagorean Mean-based invariant as an anomaly detection metric that is highly stable under no incidents but shows a deviation in the presence of incidents. We learn the bounds of the invariants in a robust manner such that anomaly detection can generalize to unseen events, even when learning from real noisy data. We perform extensive experimental validation using mobility data collected from the City of Nashville, Tennessee, and prove that the method can detect incidents within each cluster in real-time.more » « less
-
Traffic congestion anomaly detection is of paramount importance in intelligent traffic systems. The goals of transportation agencies are two-fold: to monitor the general traffic conditions in the area of interest and to locate road segments under abnormal congestion states. Modeling congestion patterns can achieve these goals for citywide roadways, which amounts to learning the distribution of multivariate time series (MTS). However, existing works are either not scalable or unable to capture the spatial-temporal information in MTS simultaneously. To this end, we propose a principled and comprehensive framework consisting of a data-driven generative approach that can perform tractable density estimation for detecting traffic anomalies. Our approach first clusters segments in the feature space and then uses conditional normalizing flow to identify anomalous temporal snapshots at the cluster level in an unsupervised setting. Then, we identify anomalies at the segment level by using a kernel density estimator on the anomalous cluster. Extensive experiments on synthetic datasets show that our approach significantly outperforms several state-of-the-art congestion anomaly detection and diagnosis methods in terms of Recall and F1-Score. We also use the generative model to sample labeled data, which can train classifiers in a supervised setting, alleviating the lack of labeled data for anomaly detection in sparse settings.more » « less
-
Power grids are undergoing major changes due to the rapid adoption of intermittent renewable energy resources and the increased availability of energy storage devices. These trends drive smart-grid operators to envision a future where peer-to-peer energy trading occurs within microgrids, leading to the development of Transactive Energy Systems. Blockchains have garnered significant interest from both academia and industry for their potential application in decentralized TES, in large part due to their high level of resilience. In this paper, we introduce a novel class of attacks against blockchain based TES, which target the gateways that connect market participants to the system. We introduce a general model of blockchain based TES and study multiple threat models and attack strategies. We also demonstrate the impact of these attacks using a testbed based on GridLAB-D and a private Ethereum network. Finally, we study how to mitigate these attack.more » « less
-
Cascading outages in power systems is a rare, but important phenomenon with huge social and economic implications. Due to the inherent complexity and heterogeneity of components in power system, analysis and prediction of the current and future states of the system is a challenging task. In this paper, we address prognosis of cascading outages in power systems by employing a novel approach based on reduced ordered binary decision diagrams.We present a systemic way of synthesizing these decision diagrams based on a simple cascade model. We also describe a workflow for finding the emergency load curtailment actions as a part of the mitigation strategy. In the end, we show the applicability of our approach using the standard IEEE 14 bus system.more » « less
-
The push to automate and digitize the electric grid has led to widespread installation of Phasor Measurement Units (PMUs) for improved real-time wide-area system monitoring and control. Nevertheless, transforming large volumes of highresolution PMU measurements into actionable insights remains challenging. A central challenge is creating flexible and scalable online anomaly detection in PMU data streams. PMU data can hold multiple types of anomalies arising in the physical system or the cyber system (measurements and communication networks). Increasing the grid situational awareness for noisy measurement data and Bad Data (BD) anomalies has become more and more significant. Number of machine learning, data analytics and physics based algorithms have been developed for anomaly detection, but need to be validated with realistic synchophasor data. Access to field data is very challenging due to confidentiality and security reasons. This paper presents a method for generating realistic synchrophasor data for the given synthetic network as well as event and bad data detection and classification algorithms. The developed algorithms include Bayesian and change-point techniques to identify anomalies, a statistical approach for event localization and multi-step clustering approach for event classification. Developed algorithms have been validated with satisfactory results for multiple examples of power system events including faults and load/generator/capacitor variations/switching for an IEEE test system. Set of synchrophasor data will be available publicly for other researchers.more » « less
-
Online crowdsourcing platforms have proliferated over the last few years and cover a number of important domains, these platforms include worker-task platforms such as Amazon Mechanical Turk, worker-for hire platforms such as TaskRabbit to specialized platforms with specific tasks such as ridesharing like Uber, Lyft, Ola, etc. An increasing proportion of the human workforce will be employed by these platforms in the near future. The crowdsourcing community has done yeoman’s work in designing effective algorithms for various key components, such as incentive design, task assignment, and quality control. Given the increasing importance of these crowdsourcing platforms, it is now time to design mechanisms so that it is easier to evaluate the effectiveness of these platforms. Specifically, we advocate developing benchmarks for crowdsourcing research. Benchmarks often identify important issues for the community to focus on and improve upon. This has played a key role in the development of research domains as diverse as databases and deep learning. We believe that developing appropriate benchmarks for crowdsourcing will ignite further innovations. However, crowdsourcing – and future of work, in general – is a very diverse field that makes developing benchmarks much more challenging. Substantial effort is needed that spans across developing benchmarks for datasets, metrics, algorithms, platforms, and so on. In this article, we initiate some discussion into this important problem and issue a call-to-arms for the community to work on this important initiative.more » « less