skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing the Local Interpretability of Machine Learning Models.
The increasing adoption of machine learning tools has led to calls for accountability via model interpretability. But what does it mean for a machine learning model to be interpretable by humans, and how can this be assessed? We focus on two definitions of interpretability that have been introduced in the machine learning literature: simulatability (a user's ability to run a model on a given input) and "what if" local explainability (a user's ability to correctly determine a model's prediction under local changes to the input, given knowledge of the model's original prediction). Through a user study with 1,000 participants, we test whether humans perform well on tasks that mimic the definitions of simulatability and "what if" local explainability on models that are typically considered locally interpretable. To track the relative interpretability of models, we employ a simple metric, the runtime operation count on the simulatability task. We find evidence that as the number of operations increases, participant accuracy on the local interpretability tasks decreases. In addition, this evidence is consistent with the common intuition that decision trees and logistic regression models are interpretable and are more interpretable than neural networks.  more » « less
Award ID(s):
1928882
PAR ID:
10187139
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
NeurIPS Workshop on Human-Centric Machine Learning (HCML)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Explainability is essential for AI models, especially in clinical settings where understanding the model’s decisions is crucial. Despite their impressive performance, black-box AI models are unsuitable for clinical use if their operations cannot be explained to clinicians. While deep neural networks (DNNs) represent the forefront of model performance, their explanations are often not easily interpreted by humans. On the other hand, hand-crafted features extracted to represent different aspects of the input data and traditional machine learning models are generally more understandable. However, they often lack the effectiveness of advanced models due to human limitations in feature design. To address this, we propose ExShall-CNN, a novel explainable shallow convolutional neural network for medical image processing. This model improves upon hand-crafted features to maintain human interpretability, ensuring that its decisions are transparent and understandable. We introduce the explainable shallow convolutional neural network (ExShall-CNN), which combines the interpretability of hand-crafted features with the performance of advanced deep convolutional networks like U-Net for medical image segmentation. Built on recent advancements in machine learning, ExShall-CNN incorporates widely used kernels while ensuring transparency, making its decisions visually interpretable by physicians and clinicians. This balanced approach offers both the accuracy of deep learning models and the explainability needed for clinical applications. 
    more » « less
  2. Unexplainable black-box models create scenarios where anomalies cause deleterious responses, thus creating unacceptable risks. These risks have motivated the field of eXplainable Artificial Intelligence (XAI) which improves trust by evaluating local interpretability in black-box neural networks. Unfortunately, the ground truth is unavailable for the model's decision, so evaluation is limited to qualitative assessment. Further, interpretability may lead to inaccurate conclusions about the model or a false sense of trust. We propose to improve XAI from the vantage point of the user's trust by exploring a black-box model's latent feature space. We present an approach, ProtoShotXAI, that uses a Prototypical few-shot network to explore the contrastive manifold between nonlinear features of different classes. A user explores the manifold by perturbing the input features of a query sample and recording the response for a subset of exemplars from any class. Our approach is a locally interpretable XAI model that can be extended to, and demonstrated on, few-shot networks. We compare ProtoShotXAI to the state-of-the-art XAI approaches on MNIST, Omniglot, and ImageNet to demonstrate, both quantitatively and qualitatively, that ProtoShotXAI provides more flexibility for model exploration. Finally, ProtoShotXAI also demonstrates novel explainability and detectability on adversarial samples. 
    more » « less
  3. Abstract With increasing interest in explaining machine learning (ML) models, this paper synthesizes many topics related to ML explainability. We distinguish explainability from interpretability, local from global explainability, and feature importance versus feature relevance. We demonstrate and visualize different explanation methods, how to interpret them, and provide a complete Python package (scikit-explain) to allow future researchers and model developers to explore these explainability methods. The explainability methods include Shapley additive explanations (SHAP), Shapley additive global explanation (SAGE), and accumulated local effects (ALE). Our focus is primarily on Shapley-based techniques, which serve as a unifying framework for various existing methods to enhance model explainability. For example, SHAP unifies methods like local interpretable model-agnostic explanations (LIME) and tree interpreter for local explainability, while SAGE unifies the different variations of permutation importance for global explainability. We provide a short tutorial for explaining ML models using three disparate datasets: a convection-allowing model dataset for severe weather prediction, a nowcasting dataset for subfreezing road surface prediction, and satellite-based data for lightning prediction. In addition, we showcase the adverse effects that correlated features can have on the explainability of a model. Finally, we demonstrate the notion of evaluating model impacts of feature groups instead of individual features. Evaluating the feature groups mitigates the impacts of feature correlations and can provide a more holistic understanding of the model. All code, models, and data used in this study are freely available to accelerate the adoption of machine learning explainability in the atmospheric and other environmental sciences. 
    more » « less
  4. Machine learning methods, particularly neural networks trained on large datasets, are transforming how scientists approach scientific discovery and experimental design. However, current state-of-the-art neural networks are limited by their uninterpretability: Despite their excellent accuracy, they cannot describe how they arrived at their predictions. Here, using an “interpretable-by-design” approach, we present a neural network model that provides insights into RNA splicing, a fundamental process in the transfer of genomic information into functional biochemical products. Although we designed our model to emphasize interpretability, its predictive accuracy is on par with state-of-the-art models. To demonstrate the model’s interpretability, we introduce a visualization that, for any given exon, allows us to trace and quantify the entire decision process from input sequence to output splicing prediction. Importantly, the model revealed uncharacterized components of the splicing logic, which we experimentally validated. This study highlights how interpretable machine learning can advance scientific discovery. 
    more » « less
  5. Historically, two primary criticisms statisticians have of machine learning and deep neural models is their lack of uncertainty quantification and the inability to do inference (i.e., to explain what inputs are important). Explainable AI has developed in the last few years as a sub‐discipline of computer science and machine learning to mitigate these concerns (as well as concerns of fairness and transparency in deep modeling). In this article, our focus is on explaining which inputs are important in models for predicting environmental data. In particular, we focus on three general methods for explainability that are model agnostic and thus applicable across a breadth of models without internal explainability: “feature shuffling”, “interpretable local surrogates”, and “occlusion analysis”. We describe particular implementations of each of these and illustrate their use with a variety of models, all applied to the problem of long‐lead forecasting monthly soil moisture in the North American corn belt given sea surface temperature anomalies in the Pacific Ocean. 
    more » « less